Citation: Ye Tao, Jin Xin-Yi, Chen Liao, Hu Chong, Ren Jie, Liu Yu-Jing, Wu Gang, Chen Lu-Jian, Chen Hong-Zheng, Li Han-Ying. Shape change of calcite single crystals to accommodate interfacial curvature: Crystallization in presence of Mg2+ ions and agarose gel-networks[J]. Chinese Chemical Letters, ;2017, 28(4): 857-862. doi: 10.1016/j.cclet.2016.12.005 shu

Shape change of calcite single crystals to accommodate interfacial curvature: Crystallization in presence of Mg2+ ions and agarose gel-networks

  • Corresponding author: Li Han-Ying, hanying_li@zju.edu.cn
  • Received Date: 4 November 2016
    Revised Date: 25 January 2016
    Accepted Date: 2 December 2016
    Available Online: 10 April 2016

Figures(4)

  • Synthetic calcite single crystals, due to their strong crystal habit, tend to grow into characteristic rhombohedra.In the nature, biogenic calcite crystals form composites together with biomacromolecular materials, spurring investigations of how the growing calcite single crystals change their habit to satisfy the curvature of the organic phase.In this work, we examine calcite crystallization on a flat surface of glass slide and a curved surface of polystyrene (PS) sphere.The crystals exhibit tiny contact area onto the glass substrate that is averagely only 15% of their projected area on the substrate.In sharp contrast, the contact area greatly increase to above 75% of the projected area, once magnesium ions or agarose gel networks are introduced into the crystallization media.Furthermore, the calcite crystals form rough and step-like interfaces with a curved surface.However, the interfaces become smooth and curved as the crystals grow in presence of magnesium ions or agarose gel networks.The discrepancy between the interfacial structures implies kinetic effects of the additives on the crystallization around the surfaces. This work may provide implications for understanding the formation mechanisms of single-crystal composite materials.
  • 加载中
    1. [1]

      Sanchez C., Shea K.J., Kitagawa S. Recent progress in hybrid materials science[J]. Chem.Soc.Rev., 2011,40:471-472. doi: 10.1039/c1cs90001c

    2. [2]

      H. A. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press, Oxford, 1989.

    3. [3]

      S. Mann, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press, Oxford, 2001.

    4. [4]

      Fratzl P. A composite matter of alignment[J]. Science, 2012,335:177-178. doi: 10.1126/science.1215841

    5. [5]

      Li H.Y., Fan C.C., Fu W.F., Xin H.L., Chen H.Z. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics[J]. Angew.Chem., 2015,127:970-974. doi: 10.1002/ange.201408882

    6. [6]

      I. Sunagawa, J. van Suchtelen, Morphology of Crystals, Springer, Netherlands, 1995.

    7. [7]

      P. M. Dove, J. J. de Yoreo, S. Weiner, Biomineralization, The Mineralogical Society of America, Washington, 2003.

    8. [8]

      E. Weber, B. Pokroy, Intracrystalline inclusions within single crystalline hosts: from biomineralization to bio-inspired crystal growth, CrystEngComm 17 (2015)5873-5883.

    9. [9]

      Politi Y., Arad T., Klein E., Weiner S., Addadi L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase[J]. Science, 2004,306:1161-1164. doi: 10.1126/science.1102289

    10. [10]

      Aizenberg J., Tkachenko A., Weiner S., Addadi L., Hendler G. Calcitic microlenses as part of the photoreceptor system in brittlestars[J]. Nature, 2001,412:819-822. doi: 10.1038/35090573

    11. [11]

      Nudelman F., Chen H.H., Goldberg H.A., Weiner S., Addadi L.. Spiers Memorial Lecture.Lessons from biomineralization:comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida[J]. Faraday Discuss., 2007,136:9-25. doi: 10.1039/b704418f

    12. [12]

      Aizenberg J., Hanson J., Koetzle T., Weiner S., Addadi L. Control of macromolecule distribution within synthetic and biogenic single calcite crystals[J]. J.Am.Chem.Soc., 1997,119:881-886. doi: 10.1021/ja9628821

    13. [13]

      Berman A., Hanson J., Leiserowitz L.. Crystal-protein interactions: controlled anisotropic changes in crystal microtexture[J]. J.Phys.Chem., 1993,97:5162-5170. doi: 10.1021/j100121a052

    14. [14]

      Li H.Y., Xin H.L., Kunitake M.E.. Calcite prisms from Mollusk shells (Atrina rigida):Swiss-cheese-like organic-inorganic single-crystal composites[J]. Adv. Funct.Mater., 2011,21:2028-2034. doi: 10.1002/adfm.v21.11

    15. [15]

      Gries K., R.Kröger , C.Kübel , Fritz M., Rosenauer A. Investigations of voids in the aragonite platelets of nacre[J]. Acta Biomater., 2009,5:3038-3044. doi: 10.1016/j.actbio.2009.04.017

    16. [16]

      Robach J.S., Stock S.R., Veis A. Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy[J]. J.Struct. Biol., 2006,155:87-95. doi: 10.1016/j.jsb.2006.03.002

    17. [17]

      Dauphin Y. Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves:Pinna nobilis and Pinctada margaritifera[J]. J.Biol. Chem., 2003,278:15168-15177. doi: 10.1074/jbc.M204375200

    18. [18]

      Nudelman F., Sommerdijk N.A. Biomineralization as an inspiration for materials chemistry[J]. Angew.Chem.Int.Ed., 2012,51:6582-6596. doi: 10.1002/anie.201106715

    19. [19]

      M. H. Nielsen, S. Aloni, J. J. De Yoreo, In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways, Science 345(2014)1158-1162.

    20. [20]

      Wang D.B., Wallace A.F., J.J.De Yoreo, Dove P.M. Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification[J]. Proc.Natl.Acad.Sci.U.S.A., 2009,106:21511-21516. doi: 10.1073/pnas.0906741106

    21. [21]

      Aizenberg J., Muller D.A., Grazul J.L., Hamann D.R. Direct fabrication of large micropatterned single crystals[J]. Science, 2003,299:1205-1208. doi: 10.1126/science.1079204

    22. [22]

      Li C., Qi L.M. Bioinspired fabrication of 3D ordered macroporous single crystals of calcite from a transient amorphous phase[J]. Angew.Chem.Int.Ed., 2008,47:2388-2393. doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Park R.J., Meldrum F.C. Synthesis of single crystals of calcite with complex morphologies[J]. Adv.Mater., 2002,14:1167-1169. doi: 10.1002/1521-4095(20020816)14:16<1167::AID-ADMA1167>3.0.CO;2-X

    24. [24]

      Habraken W.J.E.M., Tao J.H., Brylka L.J.. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate[J]. Nat.Commun., 2013,41507. doi: 10.1038/ncomms2490

    25. [25]

      Dey, Bomans, F.A.Müller. The role of prenucleation clusters in surface-induced calcium phosphate crystallization[J]. Nat.Mater., 2010,9:1010-1014. doi: 10.1038/nmat2900

    26. [26]

      Beniash E., Metzler R.A., Lam R.S., Gilbert P.U.P.A. Transient amorphous calcium phosphate in forming enamel[J]. J.Struct.Biol., 2009,166:133-143. doi: 10.1016/j.jsb.2009.02.001

    27. [27]

      Tao J.H., Pan H.H., Zeng Y.W., Xu X.R., Tang R.K. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles[J]. J.Phys.Chem.B, 2007,111:13410-13418. doi: 10.1021/jp0732918

    28. [28]

      Lai R.H., Dong P.J., Wang Y.L., Luo J.B. Redispersible and stable amorphous calcium phosphate nanoparticles functionalized by an organic bisphosphate[J]. Chin.Chem.Lett., 2014,25:295-298. doi: 10.1016/j.cclet.2013.11.012

    29. [29]

      Hetherington N.B.J., Kulak A.N., Kim Y.Y.. Porous single crystals of calcite from colloidal crystal templates:ACC is not required for nanoscale templating[J]. Adv.Funct.Mater., 2011,21:948-954. doi: 10.1002/adfm.201001366

    30. [30]

      K. J. Davis, P. M. Dove, J. J. De Yoreo, The role of Mg2+ as an impurity in calcite growth, Science 290(2000)1134-1137.

    31. [31]

      Han Y.J., Wysocki L.M., Thanawala M.S., Siegrist T., Aizenberg J. Template-dependent morphogenesis of oriented calcite crystals in the presence of magnesium ions[J]. Angew.Chem., 2005,117:2438-2442. doi: 10.1002/(ISSN)1521-3757

    32. [32]

      C. A. Orme, A. Noy, A. Wierzbicki, et al. , Formation of chiral morphologies through selective binding of amino acids to calcite surface steps, Nature 411 (2001)775-779.

    33. [33]

      Ye X.Z., Zhang F., Ma Y.R., Qi L.M. Brittlestar-inspired microlens arrays made of calcite single crystals[J]. Small, 2015,11:1677-1682. doi: 10.1002/smll.v11.14

    34. [34]

      Pokroy B., Aizenberg J. Calcite shape modulation through the lattice mismatch between the self-assembled monolayer template and the nucleated crystal face[J]. CrystEngComm, 2007,9:1219-1225. doi: 10.1039/b710294a

    35. [35]

      Berner R.A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochim.Cosmochim.Acta, 1975,39:489-504. doi: 10.1016/0016-7037(75)90102-7

    36. [36]

      Meldrum F.C., Hyde S.T. Morphological influence of magnesium and organic additives on the precipitation of calcite[J]. J.Cryst.Growth, 2001,231:544-558. doi: 10.1016/S0022-0248(01)01519-6

    37. [37]

      Bischoff J.L. Kinetics of calcite nucleation:magnesium ion inhibition and ionic strength catalysis[J]. J.Geophys.Res., 1968,73:3315-3322. doi: 10.1029/JB073i010p03315

    38. [38]

      Loste E., Wilson R.M., Seshadri R., Meldrum F.C. The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies[J]. J.Cryst.Growth, 2003,254:206-218. doi: 10.1016/S0022-0248(03)01153-9

    39. [39]

      Kunitake M.E., Baker S.P., Estroff L.A. The effect of magnesium substitution on the hardness of synthetic and biogenic calcite[J]. MRS Commun., 2012,2:113-116. doi: 10.1557/mrc.2012.20

    40. [40]

      Xu J., Yan C., Zhang F.F.. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems[J]. Proc.Natl.Acad.Sci.U.S.A., 2013,110:17750-17755. doi: 10.1073/pnas.1307612110

    41. [41]

      J. J. De Yoreo, P. M. Dove, Shaping crystals with biomolecules, Science 306 (2004)1301-1302.

    42. [42]

      Arnott S., Fulmer A., Scott W.E.. The agarose double helix and its function in agarose gel structure[J]. J.Mol.Biol., 1974,90:269-284. doi: 10.1016/0022-2836(74)90372-6

    43. [43]

      Yang D., Qi L.M., Ma J.M. Well-defined star-shaped calcite crystals formed in agarose gels[J]. Chem.Commun., 2003,118:1180-1181.

    44. [44]

      Li H.Y., Xin H.L., Muller D.A., Estroff L.A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels[J]. Science, 2009,326:1244-1247. doi: 10.1126/science.1178583

    45. [45]

      J.M.García-Ruiz , Gavira J.A., F.Otálora , Guasch A., Coll M. Reinforced protein crystals[J]. Mater.Res.Bull., 1998,33:1593-1598. doi: 10.1016/S0025-5408(98)00172-X

    46. [46]

      Li H.Y., Estroff L.A. Hydrogels coupled with self-assembled monolayers:an in vitro matrix to study calcite biomineralization[J]. J.Am.Chem.Soc., 2007,129:5480-5483. doi: 10.1021/ja067901d

    47. [47]

      Y. J. Liu, W. T. Yuan, Y. Shi, et al. , Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals, Angew. Chem. Int. Ed. 53 (2014)4127-4131.

    48. [48]

      Li H.Y., Estroff L.A. Porous calcite single crystals grown from a hydrogel medium[J]. CrystEngComm, 2007,9:1153-1155. doi: 10.1039/b709068d

    49. [49]

      Liu Y.J., Zhang H.D., Wang L.. Nanoparticles incorporated inside single-crystals:enhanced fluorescent properties[J]. Chem.Mater., 2016,28:7537-7543. doi: 10.1021/acs.chemmater.6b03589

    50. [50]

      Liu W., Liu Y.J., Chen L.. Gel-incorporated PbS and PbI2 single-crystals[J]. Chin.Chem.Lett., 2015,26:504-508. doi: 10.1016/j.cclet.2015.01.020

    51. [51]

      Chen L., Ye T., Liu Y.J.. Gel network incorporation into single-crystals: effects of gel structures and crystal-gel interaction[J]. CrystEngComm, 2014,16:6901-6906. doi: 10.1039/C4CE00243A

    52. [52]

      Chen L., Ye T., Jin X.Y.. Gel network incorporation into single crystals grown by decomplexation method[J]. CrystEngComm, 2015,17:8113-8118. doi: 10.1039/C5CE01085C

    53. [53]

      Ren J., Huang B.N., Chen L.. Constructing bulk-contact inside single crystals of organic semiconductors through gel incorporation[J]. CrystEngComm, 2016,18:800-806. doi: 10.1039/C5CE02383A

    54. [54]

      Liu Y.J., Chen L., Liu W.. Synthetic polymer/single-crystal composite[J]. Polym.Adv.Technol., 2014,25:1189-1194. doi: 10.1002/pat.v25.11

    55. [55]

      Li H.Y., Estroff L.A. Calcite growth in hydrogels:assessing the mechanism of polymer-network incorporation into single crystals[J]. Adv.Mater., 2009,21:470-473. doi: 10.1002/adma.v21:4

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    3. [3]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    4. [4]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    5. [5]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    6. [6]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    7. [7]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    8. [8]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    9. [9]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    10. [10]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    11. [11]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    12. [12]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    13. [13]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    14. [14]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    15. [15]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    16. [16]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    17. [17]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    18. [18]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    19. [19]

      Lingjun ShaBing BoJiayu LiQi LiuYa CaoJing Zhao . Precise assessment of lung cancer-derived exosomes based on dual-labelled membrane interface. Chinese Chemical Letters, 2025, 36(4): 110109-. doi: 10.1016/j.cclet.2024.110109

    20. [20]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

Metrics
  • PDF Downloads(1)
  • Abstract views(794)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return