Citation: Sun Xiu-Xia, Fan Jun, Hou Yan-Nan, Liang Shuo, Zhang Yu-Ping, Xiao Jian-Xi. Fluorescence characterization of the thermal stability of collagen mimic peptides[J]. Chinese Chemical Letters, ;2017, 28(5): 963-967. doi: 10.1016/j.cclet.2016.11.029 shu

Fluorescence characterization of the thermal stability of collagen mimic peptides

  • Corresponding author: Xiao Jian-Xi, xiaojx@lzu.edu.cn
  • 1 These authors contributed equally to this article
  • Received Date: 8 August 2016
    Revised Date: 9 November 2016
    Accepted Date: 17 November 2016
    Available Online: 28 May 2016

Figures(3)

  • The thermal stability of triple helical structure plays a critical role in collagen biosynthesis, function and degradation. CD technique was utilized to characterize the thermal stability of synthetic collagen mimic peptides. Fluorescence spectroscopy is widely used with easy access all around the world because of its inexpensive instrumentation, low operation cost, easy operation, and high sensitivity. Here we have developed an alternative fluorescence method to detect the thermal stability of collagen mimic peptides. We have demonstrated that fluorescence spectroscopy could measure the thermal stability of collagen mimic peptides with low concentrations under different circumstances. This highly sensitive fluorescence self-quenching assay will greatly expedite the studies of sequence-dependent properties of collagen mimic peptides, and it has great potential in the application of determining the thermal stability of triple helix systems such as collagens, collectins, adiponectin, macrophage scavenger and C1q.
  • 加载中
    1. [1]

      Jenkins C.L., Raines R.T.. Insights on the conformational stability of collagen[J]. Nat. Prod. Rep., 2002(19):49-59.  

    2. [2]

      Shoulders M.D., Raines R.T.. Collagen structure and stability[J]. Annu. Rev. Biochem., 2009(78):929-958.  

    3. [3]

      Rich A., Crick F.H.. The structure of collagen[J]. Nature, 1955(176):915-916.

    4. [4]

      Bella J., Eaton M., Brodsky B., Berman H.M.. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution[J]. Science, 1994(266):75-81.  

    5. [5]

      Rigby B.J.. Amino-acid composition and thermal stability of the skin collagen of the Antarctic ice-fish[J]. Nature, 1968(219):166-167.  

    6. [6]

      Gaill F., Mann K., Wiedemann H., Engel J., Timpl R.. Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents[J]. J. Mol. Biol., 1995(246):284-294.  

    7. [7]

      Leikina E., Mertts M.V., Kuznetsova N., Leikin S.. Type Ⅰ collagen is thermally unstable at body temperature[J]. Proc. Natl. Acad. Sci. U. S. A., 2002(99):1314-1318.  

    8. [8]

      Brodsky B., Thiagarajan G., Madhan B., Kar K.. Triple-helical peptides:an approach to collagen conformation, stability. and self-association[J]. Biopolymers, 2008(89):345-353.  

    9. [9]

      Persikov A.V., Ramshaw J.A.M., Kirkpatrick A., Brodsky B.. Amino acid propensitiesfor the collagentriple-helix[J]. Biochemistry, 2000(39):14960-14967.  

    10. [10]

      Persikov A.V., Ramshaw J.A., Brodsky B.. Prediction of collagen stability from amino acid sequence[J]. J. Biol. Chem., 2005(280):19343-19349.  

    11. [11]

      Xiao J.X., Addabbo R.M., Lauer J.L., Fields G.B., Baum J.. Local conformation and dynamics of isoleucine in the collagenase cleavage site provide a recognition signal for matrix metalloproteinases[J]. J. Biol. Chem., 2010(285):34181-34190.  

    12. [12]

      Fields G.B.. A model for interstitial collagen catabolism by mammalian collagenases[J]. J. Theor. Biol., 1991(153):585-602.  

    13. [13]

      Makareeva E., Mertz E.L., Kuznetsova N.V.. Structural heterogeneity of type Ⅰ collagentriple helix and its rolein osteogenesis imperfecta[J]. J. Biol. Chem., 2008(283):4787-4798.  

    14. [14]

      Xiao J.X., Madhan B., Li Y.J., Brodsky B., Baum J.. Osteogenesis imperfecta model peptides:incorporationof residues replacing Glywithin a triple helix achieved by renucleation and local flexibility[J]. Biophys. J., 2011(101):449-458.  

    15. [15]

      Ryhänen L., Zaragoza E.J., Uitto J.. Conformational stability of type Ⅰ collagen triple helix:evidence for temporary and local relaxation of the protein conformation using a proteolytic probe[J]. Arch. Biochem. Biophys., 1983(223):562-571.  

    16. [16]

      Beck K., Chan V.C., Shenoy N.. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine[J]. Proc. Natl. Acad. Sci. U. S. A., 2000(97):4273-4278.  

    17. [17]

      Gauba V., Hartgerink J.D.. Synthetic collagen heterotrimers:structural mimics of wild-type and mutant collagen type Ⅰ[J]. J. Am. Chem. Soc., 2008(130):7509-7515.  

    18. [18]

      Chen H.M., Rhoades E.. Fluorescence characterization of denatured proteins[J]. Curr. Opin. Struct. Biol., 2008(18):516-524.  

    19. [19]

      Sun X.X., Fan J., Li X.. Colorimetric and fluorometric monitoring of the helix composition of collagen-like peptides at the nM level[J]. Chem. Commun., 2016(52):3107-3110.

    20. [20]

      P. H. Byers, W. G. Cole, Osteogenesis imperfecta, in: P. M. Royce, B. Steinmann (Eds. ), Connective Tissue and Its Heritable Disorders, Wiley-Liss, New York, 2002, pp. 385-430.

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    3. [3]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    4. [4]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    5. [5]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    6. [6]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    7. [7]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    8. [8]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    9. [9]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    10. [10]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    11. [11]

      Dake LiuShuyan LiuFanlei HuZhongtang LiZhongjun LiN-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762

    12. [12]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    14. [14]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    15. [15]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    16. [16]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    17. [17]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    18. [18]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    19. [19]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    20. [20]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

Metrics
  • PDF Downloads(0)
  • Abstract views(747)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return