Citation: Zhou Chunhua, A.Abdel-Rahman Mona, Li Wen, Liu Kun, Zhang Afang. Thermoresponsive dendronized copolymers for protein recognitions based on biotin-avidin interaction[J]. Chinese Chemical Letters, ;2017, 28(4): 832-838. doi: 10.1016/j.cclet.2016.11.016 shu

Thermoresponsive dendronized copolymers for protein recognitions based on biotin-avidin interaction

  • Corresponding author: Zhang Afang, azhang@shu.edu.cn
  • Received Date: 19 October 2016
    Revised Date: 6 November 2016
    Accepted Date: 8 November 2016
    Available Online: 18 April 2016

Figures(6)

  • Thermoresponsive biotinylated dendronized copolymers carrying dendritic oligoethylene glycol(OEG) pendants were prepared via free radical polymerization, and their protein recognitions based on biotin-avidin interaction investigated.Both first(PG1) and second generation(PG2) dendronized copolymers were designed to examine possible thickness effects on the interaction between biotin and avidin.Inherited from the outstanding thermoresponsive properties from OEG dendrons, these biotinylated cylindrical copolymers show characteristic thermoresponsive behavior which provides an envelope to capture avidin through switching temperatures above or below their phase transition temperatures(Tcps).Thus, the recognition of polymer-supported biotin with avidin was investigated with UV/vis spectroscopy and dynamic laser light scattering.In contrast to the case for PG1, the increased thickness for copolymer PG2 hinders partially and inhibits the recognition of biotin moieties with avidin either below or above its Tcp.This demonstrates the significant architecture effects from dendronized polymers on the biotin moieties to shift onto periphery of the collapsed aggregates, which should be a prerequisite for protein recognition.These kinds of novel thermoresponsive copolymers may pave a way for the interesting biological applications in areas such as reversible activity control of enzyme or proteins, and for controlled delivery of drugs or genes.
  • 加载中
    1. [1]

      Stites W.E. Protein-protein interactions:interface structure, binding thermodynamics, and mutational analysis[J]. Chem.Rev., 1997,97:1233-1250. doi: 10.1021/cr960387h

    2. [2]

      Peczuh M.W., Hamilton A.D. Peptide and protein recognition by designed molecules[J]. Chem.Rev., 2000,100:2479-2494. doi: 10.1021/cr9900026

    3. [3]

      Mahon C.S., Fulton D.A. Mimicking nature with synthetic macromolecules capable of recognition[J]. Nat.Chem., 2014,6:665-672. doi: 10.1038/nchem.1994

    4. [4]

      Schirhagl R. Bioapplications for molecularly imprinted polymers[J]. Anal.Chem., 2014,86:250-261. doi: 10.1021/ac401251j

    5. [5]

      Perez L., Ghang Y.J., Williams P.B.. Cell and protein recognition at a supported bilayer interface 97via in situ cavitand-mediated functional polymer growth[J]. Langmuir, 2015,31:11152-11157. doi: 10.1021/acs.langmuir.5b03124

    6. [6]

      Jayasuriya N., Bosak S., Regen S.L. Supramolecular surfactants:polymerized bolaphiles exhibiting extraordinarily high membrane-disrupting activity[J]. J. Am.Chem.Soc., 1990,112:5851-5854. doi: 10.1021/ja00171a027

    7. [7]

      (a)T. Nochi, Y. Yuki, H. Takahashi, et al. , Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines, Nat. Mater. 9(2010)572-578;
      (b)T. Vermonden, R. Censi, W. E. Hennink, Hydrogels for protein delivery, Chem. Rev. 112(2012)2853-2888.

    8. [8]

      M.Calderón , Quadir M.A., Sharma S.K., Haag R. Dendritic polyglycerols for biomedical applications[J]. Adv.Mater., 2010,22:190-218. doi: 10.1002/adma.v22:2

    9. [9]

      Tziampazis E., Kohn J., Moghe P.V. PEG-variant biomaterials as selectively adhesive protein templates:model surfaces for controlled cell adhesion and migration[J]. Biomaterials, 2000,21:511-520. doi: 10.1016/S0142-9612(99)00212-4

    10. [10]

      Wagner V., Dullaart A., Bock A.K., Zweck A. The emerging nanomedicine landscape[J]. Nat.Biotechnol., 2006,24:1211-1217. doi: 10.1038/nbt1006-1211

    11. [11]

      Farokhzad O.C., Langer R. Nanomedicine:developing smarter therapeutic and diagnostic modalities[J]. Adv.Drug Deliv.Rev., 2006,58:1456-1459. doi: 10.1016/j.addr.2006.09.011

    12. [12]

      Hoffman A.S., Stayton P.S. Bioconjugates of smart polymers and proteins: synthesis and applications[J]. Macromol.Symp., 2004,207:139-152. doi: 10.1002/(ISSN)1521-3900

    13. [13]

      Ma Y., Pan G.Q., Zhang Y., Guo X.Z., Zhang H.Q. Narrowly dispersed hydrophilic molecularly imprinted polymer nanoparticles for efficient molecular recognition in real aqueous samples including river water, milk, and bovine serum[J]. Angew.Chem.Int.Ed., 2013,52:1511-1514. doi: 10.1002/anie.201206514

    14. [14]

      N. M. Green, Avidin. 1. The use of(14-C)biotin for kinetic studies and for assay, Biochem. J. 89(1963)585-591.

    15. [15]

      Sardo A., Wohlschlager T., Lo C.. Burkavidin:a novel secreted biotin-binding protein from the human pathogen Burkholderia pseudomallei[J]. Protein Expr.Purif., 2011,77:131-139. doi: 10.1016/j.pep.2011.01.003

    16. [16]

      Zhu M., Gong X., Hu Y.H.. Streptavidin-biotin-based directional double nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1[J]. J.Trans.Med., 2014,12352. doi: 10.1186/s12967-014-0352-5

    17. [17]

      Fornera S., Balmer T.E., Zhang B., A.D.Schlüter , Walde P. Immobilization of peroxidase on SiO2 surfaces with the help of a dendronized polymer and the avidin-biotin system[J]. Macromol.Biosci., 2011,11:1052-1067. doi: 10.1002/mabi.v11.8

    18. [18]

      Marttila A.T., Laitinen O.H., Airenne K.J.. Recombinant NeutralLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties[J]. FEBS Lett., 2000,467:31-36. doi: 10.1016/S0014-5793(00)01119-4

    19. [19]

      Hellman L.M., Fried M.G. Electrophoretic mobility shift assay(EMSA)for detecting protein-nucleic acid interactions[J]. Nat.Protoc., 2007,2:1849-1861. doi: 10.1038/nprot.2007.249

    20. [20]

      (a)L. E. Bromberg, E. S. Ron, Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery, Adv. Drug Deliv. Rev. 31 (1998)197-221;
      (b)E. S. Gil, S. M. Hudson, Stimuli-responsive polymers and their bioconjugates, Prog. Polym. Sci. 29(2004)1173-1222.

    21. [21]

      W. Li, A. Zhang, K. Feldman, P. Walde, A. D. Schlüter, Thermoresponsive dendronized polymers, Macromolecules 41(2008)3659-3667.

    22. [22]

      Liu L.X., Li W., Yan J.T., Zhang A. Thermoresponsive dendronized polymeric sensors[J]. J.Polym.Sci.A Polym.Chem., 2014,52:1706-1713. doi: 10.1002/pola.v52.12

    23. [23]

      (a)C. M. Yam, J. M. Lopez-Romero, J. Gu, C. Cai, Protein-resistant monolayers prepared by hydrosilylation of alpha-oligo(ethylene glycol)-omega-alkenes on hydrogen-terminated silicon(111) surfaces, Chem. Commun. (Camb. ) (2004)2510-2511;
      (b)X. Y. Zhu, Y. Jun, D. R. Staarup, et al. , Grafting of high-density poly(ethylene glycol)monolayers on Si(111), Langmuir 17(2001)7798-7803.

    24. [24]

      (a)R. Langer, J. P. Vacanti, Tissue engineering, Science 260(1993)920-926;
      (b)A. G. A. Coombes, S. Tasker, M. Lindbald, et al. , Biodegradable polymeric microparticles for drug delivery and vaccine formulation: the surface attachment of hydrophilic species using the concept of poly(ethylene glycol) anchoring segments, Biomaterials 18(1997)1153-1161.

    25. [25]

      Ericsson E.M., Enander K., Bui L.. Site-specific and covalent attachment of his-tagged proteins by chelation assisted photoimmobilization:a strategy for microarraying of protein ligands[J]. Langmuir, 2013,29:11687-11694. doi: 10.1021/la4011778

    26. [26]

      W. Li, A. Zhang, Y. Chen, et al. , Low toxic, thermoresponsive dendrimers based on oligoethylene glycols with sharp and fully reversible phase transitions, Chem. Commun. (Camb. )(2008)5948-5950.

    27. [27]

      Junk M.J.N., Li W., Schlüter A.D.. EPR spectroscopic characterization of local nanoscopic heterogeneities during the thermal collapse of thermoresponsive dendronized polymers[J]. Angew.Chem.Int.Ed., 2010,49:5683-5687. doi: 10.1002/anie.v49:33

    28. [28]

      Green N.M. Spectrophotometric determination of avidin and biotin[J]. Methods Enzymol., 1970,18:418-424. doi: 10.1016/0076-6879(71)18342-5

  • 加载中
    1. [1]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    2. [2]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    3. [3]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    4. [4]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    5. [5]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    6. [6]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    7. [7]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    8. [8]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    9. [9]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    10. [10]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    11. [11]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    12. [12]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    13. [13]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    14. [14]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    15. [15]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    16. [16]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

    17. [17]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    18. [18]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

Metrics
  • PDF Downloads(0)
  • Abstract views(666)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return