Citation: Chen Shuang-Shuang, Lu Xue-Min, Lu Qing-Hua. Effects of concave and convex substrate curvature on cell mechanics and the cytoskeleton[J]. Chinese Chemical Letters, ;2017, 28(4): 818-826. doi: 10.1016/j.cclet.2016.10.039 shu

Effects of concave and convex substrate curvature on cell mechanics and the cytoskeleton

  • Corresponding author: Lu Qing-Hua, qhlu@sjtu.edu.cn
  • Received Date: 13 September 2016
    Revised Date: 18 October 2016
    Accepted Date: 24 October 2016
    Available Online: 2 April 2016

Figures(9)

  • In order to understand how cells respond to concave and convex subcellular surface structures, colloidal crystal array and honeycomb-structured surfaces composed of highly ordered hexagonal units with completely inverse curvature were fabricated via facile self-assembly and breath figure approaches, respectively.The influence of hexagonal surface curvature on cell fate was subsequently investigated. Cells underwent more extensive spreading on the convex colloidal crystal array surface, while adhesive forces were higher on the concave honeycomb surface.The behaviors of cells on the different surfaces were investigated by comparing cell morphology, cellular adhesive force and cytoskeleton structure.The results revealed comprehensive differences in cell behavior between those on concave honeycomb surfaces and convex colloidal crystal arrays.
  • 加载中
    1. [1]

      Yeung T., Georges P.C., Flanagan L.A.. Effects of substrate stiffness on cell morphology cytoskeletal structure, and adhesion[J]. Cell Motil.Cytoskeleton, 2005,60:24-34. doi: 10.1002/(ISSN)1097-0169

    2. [2]

      Mullen C.A., Vaughan T.J., Voisin M.C.. Cell morphology and focal adhesion location alters internal cell stress[J]. J.R.Soc.Interface, 2014,1120140885. doi: 10.1098/rsif.2014.0885

    3. [3]

      Keselowsky B.G., Collard D.M., García A.J.. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion[J]. J.Biomed.Mater.Res.A, 2003,66A:247-259. doi: 10.1002/jbm.a.v66a:2

    4. [4]

      Gibson L.J., Ashby M.F. The mechanics of three-dimensional cellular materials[J]. Proc.R.Soc.A, 1982,382:43-59. doi: 10.1098/rspa.1982.0088

    5. [5]

      Chen J., Irianto J., Inamdar S.. Cell mechanics structure, and function are regulated by the stiffness of the three-dimensional microenvironment[J]. Biophys.J., 2012,103:1188-1197. doi: 10.1016/j.bpj.2012.07.054

    6. [6]

      Bao G., Suresh S. Cell and molecular mechanics of biological materials[J]. Nat. Mater., 2003,2:715-725. doi: 10.1038/nmat1001

    7. [7]

      Tan J., Saltzman W.M. Biomaterials with hierarchically defined micro-and nanoscale structure[J]. Biomaterials, 2004,25:3593-3601. doi: 10.1016/j.biomaterials.2003.10.034

    8. [8]

      Ranella A., Barberoglou M., Bakogianni S., Fotakis C., Stratakis E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomater., 2010,6:2711-2720. doi: 10.1016/j.actbio.2010.01.016

    9. [9]

      Zhao L.Z., Mei S.L., Chu P.K., Zhang Y.M., Wu Z.F. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions[J]. Biomaterials, 2010,31:5072-5082. doi: 10.1016/j.biomaterials.2010.03.014

    10. [10]

      Chen C.S., Mrksich M., Huang S., Whitesides G.M., Ingber D.E. Geometric control of cell life and death[J]. Science, 1997,276:1425-1428. doi: 10.1126/science.276.5317.1425

    11. [11]

      Newhart A., Janicki S.M. Seeing is believing:visualizing transcriptional dynamics in single cells[J]. J.Cell.Physiol., 2014,229:259-265. doi: 10.1002/jcp.24445

    12. [12]

      Dubey G.P., Ben-Yehuda S.. Intercellular nanotubes mediate bacterial communication[J]. Cell, 2011,144:590-600. doi: 10.1016/j.cell.2011.01.015

    13. [13]

      Fletcher D.A., Mullins D. Cell mechanics and the cytoskeleton[J]. Nature, 2010,463:485-492. doi: 10.1038/nature08908

    14. [14]

      Yamaki K., Harada I., Goto M., Cho C.S., Akaike T. Regulation of cellular morphology using temperature-responsive hydrogel for integrin-mediated mechanical force stimulation[J]. Biomaterials, 2009,30:1421-1427. doi: 10.1016/j.biomaterials.2008.11.036

    15. [15]

      Chen L., Liu X.L., Su B.. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces[J]. Adv.Mater., 2011,23:4376-4380. doi: 10.1002/adma.201102435

    16. [16]

      Frame M.D., Sarelius I.H. Flow-induced cytoskeletal changes in endothelial cells growing on curved surfaces[J]. Microcirculation, 2000,7:419-427. doi: 10.1111/micc.2000.7.issue-6

    17. [17]

      J. A. Sanz-Herrera, P. Moreo, J. M. García-Aznar, M. Doblaré, On the effect of substrate curvature on cell mechanics, Biomaterials 30(2009)6674-6686.

    18. [18]

      James J., Goluch E.D., Hu H., Liu C., Mrksich M. Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity[J]. Cell Motil.Cytoskeleton, 2008,65:841-852. doi: 10.1002/cm.v65:11

    19. [19]

      Tamura M. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN[J]. Science, 1998,280:1614-1617. doi: 10.1126/science.280.5369.1614

    20. [20]

      Kim S.V., Mehal W.Z., Dong X.M.. Modulation of cell adhesion and motility in the immune system by Myo1f[J]. Science, 2006,314:136-139. doi: 10.1126/science.1131920

    21. [21]

      Cukierman E., Pankov R., Stevens D.R., Yamada K.M. Taking cell-matrix adhesions to the third dimension[J]. Science, 2001,294:1708-1712. doi: 10.1126/science.1064829

    22. [22]

      Raic A., Rödling L., Kalbacher H., Lee-Thedieck C.. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells[J]. Biomaterials, 2014,35:929-940. doi: 10.1016/j.biomaterials.2013.10.038

    23. [23]

      Park J., Babensee J.E. Differential functional effects of biomaterials on dendritic cell maturation[J]. Acta Biomater., 2012,8:3606-3617. doi: 10.1016/j.actbio.2012.06.006

    24. [24]

      A. J. García, Get a grip: integrins in cell-biomaterial interactions, Biomaterials 26(2005)7525-7529.

    25. [25]

      Whitesides G.M., Grzybowski B. Self-assembly at all scales[J]. Science, 2002,295:2418-2421. doi: 10.1126/science.1070821

    26. [26]

      Xu Y.X., Sheng K.X., Li C., Shi G.Q. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010,4:4324-4330. doi: 10.1021/nn101187z

    27. [27]

      Zhang S.Y., Regulacio M.D., Han M.Y. Self-assembly of colloidal one-dimensional nanocrystals[J]. Chem.Soc.Rev., 2014,43:2301-2323. doi: 10.1039/c3cs60397k

    28. [28]

      Yamazaki H., Gotou S., Ito K.. Micropatterned culture of HepG2 spheroids using microwell chip with honeycomb-patterned polymer film[J]. J.Biosci. Bioeng., 2014,118:455-460. doi: 10.1016/j.jbiosc.2014.03.006

    29. [29]

      A.S.de León, J.Rodríguez-Hernández , Cortajarena A.L. Honeycomb patterned surfaces functionalized with polypeptide sequences for recognition and selective bacterial adhesion[J]. Biomaterials, 2013,34:1453-1460. doi: 10.1016/j.biomaterials.2012.10.074

    30. [30]

      Zhu Y.D., Sheng R.L., Luo T.. Honeycomb-structured films by multifunctional amphiphilic biodegradable copolymers:surface morphology control and biomedical application as scaffolds for cell growth[J]. ACS Appl.Mater.Interfaces, 2011,3:2487-2495. doi: 10.1021/am200371c

    31. [31]

      Wu X.H., Wang S.F. Regulating MC3T3-E1 cells on deformable poly (e-caprolactone)honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent[J]. ACS Appl.Mater.Interfaces, 2012,4:4966-4975. doi: 10.1021/am301334s

    32. [32]

      Yap F.L., Zhang Y. Assembly of polystyrene microspheres and its application in cell micropatterning[J]. Biomaterials, 2007,28:2328-2338. doi: 10.1016/j.biomaterials.2007.01.034

    33. [33]

      M.Hernández-Guerrero , Stenzel M.H. Honeycomb structured polymer films via breath figures[J]. Polym.Chem., 2012,3:563-577. doi: 10.1039/C1PY00219H

    34. [34]

      Chen S.S., Lu X.M., Zhu D.D., Lu Q.H. Targeted grafting of thermoresponsive polymers from a penetrative honeycomb structure for cell sheet engineering[J]. Soft Matter, 2015,11:7420-7427. doi: 10.1039/C5SM01769F

    35. [35]

      Chen S.S., Lu X.M., Hu Y., Lu Q.H. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold[J]. Biomater.Sci., 2015,3:85-93. doi: 10.1039/C4BM00233D

    36. [36]

      Yin Y.D., Alivisatos A.P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature, 2005,437:664-670. doi: 10.1038/nature04165

    37. [37]

      Kawano T., Sato M., Yabu H., Shimomura M. Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs):uniform porous polymer scaffolds prepared by the breath figure technique[J]. Biomater.Sci., 2014,2:52-56. doi: 10.1039/C3BM60195A

    38. [38]

      Biazar E., Khorasani M.T., Joupari M.D. Cell adhesion and surface properties of polystyrene surfaces grafted with poly(N-isopropylacrylamide)[J]. Chin.J.Polym. Sci., 2013,31:1509-1518. doi: 10.1007/s10118-013-1335-3

    39. [39]

      The software was provided on the website: http://cn.mathworks.com/index.html?s_tid=gn_logo.

    40. [40]

      Yao X., Peng R., Ding J.D. Cell-material interactions revealed via material techniques of surface patterning[J]. Adv.Mater., 2013,25:5257-5286. doi: 10.1002/adma.201301762

    41. [41]

      Jeon H., C.G.Simon Jr., Kim G. A mini-review:cell response to microscale, nanoscale, and hierarchical patterning of surface structure[J]. J.Biomed.Mater. Res.Part B Appl.Biomater., 2014,102:1580-1594.  

    42. [42]

      Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation[J]. Nat.Rev.Immunol., 2008,8:958-969. doi: 10.1038/nri2448

    43. [43]

      Dalby M.J., Gadegaard N., Oreffo R.O.C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate[J]. Nat.Mater., 2014,13:558-569. doi: 10.1038/nmat3980

    44. [44]

      Juan S.H., Tur J.M.M. Tensegrity frameworks:static analysis review[J]. Mech. Mach.Theory, 2008,43:859-881. doi: 10.1016/j.mechmachtheory.2007.06.010

    45. [45]

      Zhang G.H., Hou R.X., Zhan D.X.. Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility[J]. Chin.Chem.Lett., 2013,24:710-714. doi: 10.1016/j.cclet.2013.05.011

    46. [46]

      Heng L.P., Meng X.F., Wang B., Jiang L. Bioinspired design of honeycomb structure interfaces with controllable water adhesion[J]. Langmuir, 2013,29:9491-9498. doi: 10.1021/la401991n

    47. [47]

      Dembo M., Wang Y.L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts[J]. Biophys.J., 1999,76:2307-2316. doi: 10.1016/S0006-3495(99)77386-8

    48. [48]

      Ingber D.E. Cellular tensegrity:defining new rules of biological design that govern the cytoskeleton[J]. J.Cell Sci., 1993,104:613-627.  

    49. [49]

      Ingber D.E., Tensegrity I. Cell structure and hierarchical systems biology[J]. J.Cell Sci., 2003,116:1157-1173. doi: 10.1242/jcs.00359

    50. [50]

      Ingber D.E., Tensegrity I.I. How structural networks influence cellular information processing networks[J]. J.Cell Sci., 2003,116:1397-1408. doi: 10.1242/jcs.00360

    51. [51]

      Ingber D.E. Tensegrity:the architectural basis of cellular mechanotransduction[J]. Annu.Rev.Physiol., 1997,59:575-599. doi: 10.1146/annurev.physiol.59.1.575

    52. [52]

      Crawford-Young S.J.. Effects of microgravity on cell cytoskeleton and embryogenesis[J]. Int. J. Dev.Biol., 2006,50:183-191. doi: 10.1387/ijdb.052077sc

    53. [53]

      Cogoli A., Tschopp A., Fuchs-Bislin P.. Cell sensitivity to gravity[J]. Science, 1984,225:228-230. doi: 10.1126/science.6729481

  • 加载中
    1. [1]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    2. [2]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    3. [3]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    8. [8]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    11. [11]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    12. [12]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    13. [13]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    14. [14]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    15. [15]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    16. [16]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    17. [17]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    18. [18]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    19. [19]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    20. [20]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

Metrics
  • PDF Downloads(2)
  • Abstract views(650)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return