Citation: Lv Xian-Hai, Ren Zi-Li, Li Dong-Dong, Ruan Ban-Feng, Li Qing-Shan, Chu Ming-Jie, Ai Cheng-Ying, Liu Dao-Hong, Mo Kai, Cao Hai-Qun. Discovery of novel double pyrazole Schiff base derivatives as anti-tobacco mosaic virus (TMV) agents[J]. Chinese Chemical Letters, ;2017, 28(2): 377-382. doi: 10.1016/j.cclet.2016.10.029 shu

Discovery of novel double pyrazole Schiff base derivatives as anti-tobacco mosaic virus (TMV) agents

  • Corresponding author: Ruan Ban-Feng, ruanbf@huft.edu.cn Cao Hai-Qun, haiquncao@163.com
  • Received Date: 14 June 2016
    Revised Date: 22 August 2016
    Accepted Date: 23 September 2016
    Available Online: 1 February 2016

Figures(4)

  • Many pyrazole derivatives were reported to exhibit highly activity towards tobacco mosaic virus (TMV). In this work, an optimized pyrazole Schiff base scaffold was designed and introduced to derive novel potential TMV inhibitors. Thirty-six compounds were synthesized, characterized by elemental analysis, mass spectra and nuclear magnetic resonance (NMR) spectroscopy and evaluated by biological experiments. The bioassay results showed that some of the synthesized compounds exhibited excellent anti-TMV activities. Especially, 5-chloro-3-methyl-1H-pyrazole contained compound 4j showed ningnanmycin comparable inhibitory activity and can be considered as potential anti-TMV candidate agent. With molecular docking, compound 4j insert into nucleotide sequence (GAAGUU) of OriRNA stably which revealed nucleotide could be a target of these compounds.
  • 加载中
    1. [1]

      C. Ritzenthaler. Resistance to plant viruses:old issue. news answers?[J]. Curr. Opin. Biotechnol., 2005,16:118-122. doi: 10.1016/j.copbio.2005.02.009

    2. [2]

      Z. Wang, P. Wei, X. Xizhi. Design, synthesis, and antiviral activity evaluation of phenanthrene-based antofine derivatives[J]. J. Agric. Food Chem., 2012,60:8544-8551. doi: 10.1021/jf302746m

    3. [3]

      Z. Wan, D. Hu, P. Li. Synthesis, antiviral bioactivity of novel 4-thioquinazoline derivatives containing chalcone moiety[J]. Molecules., 2015,20:11861-11874. doi: 10.3390/molecules200711861

    4. [4]

      A.K. Ghosh, B.D. Chapsal, I.T. Weber. ChemInform abstract:Design of HIV protease inhibitors targeting protein backbone:an effective strategy for combating drug resistance[J]. Acc. Chem. Res., 2008,41:78-86. doi: 10.1021/ar7001232

    5. [5]

      M. Whiting, J. Muldoon, Y.C. Lin. Inhibitors of HIV-1 protease by using in situ click chemistry[J]. Angew. Chem. Int. Ed. Engl., 2006,45:1435-1439. doi: 10.1002/(ISSN)1521-3773

    6. [6]

      R.A. Hodgson, R.N. Beachy, H.B. Pakrasi. Selective inhibition of photosystem II in spinach by tobacco mosaic virus:an effect of the viral coat protein[J]. FEBS Lett., 1989,245:267-270. doi: 10.1016/0014-5793(89)80234-0

    7. [7]

      R.N. Beachy. Reduced photosystem II activity and accumulation of viral coat protein in chloroplasts of leaves infected with tobacco mosaic virus[J]. Plant Physiol., 1989,89:111-116. doi: 10.1104/pp.89.1.111

    8. [8]

      S. Asurmendi, R.H. Berg, J.C. Koo. Coat protein regulates formation of replication complexes during tobacco mosaic virus infection[J]. Proc. Natl. Acad. Sci. U. S. A., 2004,101:1415-1420. doi: 10.1073/pnas.0307778101

    9. [9]

      M. Heinlein, H.S. Padgett, J.S. Gens. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection[J]. Plant Cell., 1998,10:1107-1120. doi: 10.1105/tpc.10.7.1107

    10. [10]

      T.W. Kahn, M. Lapidot, M. Heinlein. Domains of the TMV movement protein involved in subcellular localization[J]. Plant J., 1998,15:15-25. doi: 10.1046/j.1365-313X.1998.00172.x

    11. [11]

      C. Reichel, R.N. Beachy. Tobacco mosaic virus infection induces severe morphological changes of the endoplasmic reticulum[J]. Proc. Natl. Acad. Sci., 1998,95:11169-11174. doi: 10.1073/pnas.95.19.11169

    12. [12]

      S. Gao, R. Zhang, Z. Yu. Antofine analogues can inhibit tobacco mosaic virus assembly through small-molecule-RNA interactions[J]. Chembiochem., 2012,13:1622-1627. doi: 10.1002/cbic.v13.11

    13. [13]

      H.S. Chen, Z.M. Li. Synthesis of some heteroaryl pyrazole derivatives and their biological activities[J]. Chin. J. Chem., 2000,18:596-602.  

    14. [14]

      R.S. Balaskar, S.N. Gavade, M.S. Mane. Greener approach towards the facile synthesis of 1,4-dihydropyrano[2,3-c]pyrazol-5-yl cyanide derivatives at room temperature[J]. Chin. Chem. Lett., 2010,21:1175-1179. doi: 10.1016/j.cclet.2010.06.013

    15. [15]

      F.K. Keter, J. Darkwa. Perspective:the potential of pyrazole-based compounds in medicine[J]. Biol. Met., 2012,25:9-21.  

    16. [16]

      G. Ouyang, Z. Chen, X.J. Cai. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group[J]. Bioorg. Med. Chem., 2008,16:9699-9707. doi: 10.1016/j.bmc.2008.09.070

    17. [17]

      S.N. Pandeya, D. Sriram, G. Nath. Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(49-chlorophenyl)thiazol-2-yl] thiosemicarbazide[J]. Eur. J. Pharm. Sci., 1999,9:25-31. doi: 10.1016/S0928-0987(99)00038-X

    18. [18]

      Y. Liu, K. Zhang, R. Lei. DNA-binding and anti-oxidation properties of binuclear lanthanide(III) complexes of 8-hydroxyquinoline-7-carbaldehyde-(isonicotinyl)hydrazone[J]. J. Coord. Chem., 2012,65:2041-2054. doi: 10.1080/00958972.2012.683485

    19. [19]

      A.G. Blackman. The coordination chemistry of tripodal tetraamine ligands[J]. Cheminform., 2005,24:1-39.  

    20. [20]

      F. Marchetti, C. Pettinari, R. Pettinari. Group 12 metal complexes of tetradentate N2O2-Schiff-base ligands incorporating pyrazole:synthesis, characterisation and reactivity toward S-donors, N-donors, copper and tin acceptors[J]. Polyhedron., 1999,18:3041-3050. doi: 10.1016/S0277-5387(99)00230-2

    21. [21]

      T.S. Reid, L.S. Beese. Crystal structures of the anticancer clinical candidates R115777(Tipifarnib) and BMS-214662 complexed with protein farnesyltransferase suggest a mechanism of FTI selectivity[J]. Biochemistry., 2004,43:6877-6884. doi: 10.1021/bi049723b

    22. [22]

      F.F. Fleming, L. Yao, P.C. Ravikumar. Nitrile-containing pharmaceuticals:efficacious roles of the nitrile pharmacophore[J]. J. Med. Chem., 2010,53:7902-7917. doi: 10.1021/jm100762r

    23. [23]

      Y. Li, H.Q. Zhang, J. Liu. Stereoselective synthesis and antifungal activities of (E)-alpha-(methoxyimino)benzeneacetate derivatives containing 1,3,5-substituted pyrazole ring[J]. J. Agric. Food Chem., 2006,54:3636-3640. doi: 10.1021/jf060074f

    24. [24]

      X.H. Lv, J.J. Xiao, Z.L. Ren. Design, synthesis and insecticidal activities of N-(4-cyano-1-phenyl-1H-pyrazol-5-yl)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives[J]. RSC Adv., 2015,5:55179-55185. doi: 10.1039/C5RA09286H

    25. [25]

      C. Sachse, J.Z. Chen, P.D. Coureux. High-resolution electron microscopy of helical specimens:a fresh look at tobacco mosaic virus[J]. J. Mol. Biol., 2007,371:812-835. doi: 10.1016/j.jmb.2007.05.088

    26. [26]

      P. Mariusz, S. Marta, A. Maciej. Automated 3D structure composition for large RNAs[J]. Nucleic Acids Res., 2012,40e112. doi: 10.1093/nar/gks339

    27. [27]

      J.S. Thorson, T.J. Hosted, J. Jiang. Natures carbohydrate chemists the enzymatic glycosylation of bioactive bacterial metabolites[J]. Curr. Org. Chem., 2001,5:139-167. doi: 10.2174/1385272013375706

    28. [28]

      G.V. Gooding Jr., T.T. Hebert. A simple technique for purification of tobacco mosaic virus in large quantities[J]. Phytopathology., 1967,571285.

    29. [29]

      G.M. Sheldrick, SHELX-97-A Program for Crystal Structure Determination, University of Göttingen, Göttingen, 1997.

    30. [30]

      Bruker AXS Inc., Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, WI, USA, 2004.

    31. [31]

      I.J. Bruno, J.C. Cole, P.R. Edgington. New software for searching the Cambridge Structural Database and visualizing crystal structures[J]. Acta Crystallogr., 2002,58:389-397. doi: 10.1107/S0108768102003324

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    4. [4]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    5. [5]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    6. [6]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    7. [7]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    8. [8]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    9. [9]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    10. [10]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    11. [11]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    12. [12]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    13. [13]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    14. [14]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    15. [15]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    18. [18]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    19. [19]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    20. [20]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

Metrics
  • PDF Downloads(5)
  • Abstract views(829)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return