Citation: Lyu Jing-Hui, Hu Hua-Lei, Rui Jia-Yao, Zhang Qun-Feng, Cen Jie, Han Wen-Wen, Wang Qing-Tao, Chen Xiao-Kun, Pan Zhi-Yan, Li Xiao-Nian. Nitridation: A simple way to improve the catalytic performance of hierarchical porous ZSM-5 in benzene alkylation with methanol[J]. Chinese Chemical Letters, ;2017, 28(2): 482-486. doi: 10.1016/j.cclet.2016.10.025 shu

Nitridation: A simple way to improve the catalytic performance of hierarchical porous ZSM-5 in benzene alkylation with methanol

  • Corresponding author: Li Xiao-Nian, xnli@zjut.edu.cn
  • Received Date: 20 July 2016
    Revised Date: 18 September 2016
    Accepted Date: 22 September 2016
    Available Online: 27 February 2016

Figures(8)

  • Nitrided hierarchical porous ZSM-5 was synthesized by nitridation of hierarchical porous ZSM-5 with flowing ammonia at elevated temperature. The samples were characterized by XRD, SEM, Nitrogen sorption isotherms, NH3-TPD and Py-IR, and evaluated in alkylation of benzene and methanol. The result indicated that the high specific surface area of parent ZSM-5 was maintained, while the Brönsted acidity was effectively adjusted by nitridation. Moreover, the high suppression of ethylbenzene was observed on nitrided catalyst and this could be attributed to the decrease of Brönsted acidity which suppressed the methanol to olefins reactions.
  • 加载中
    1. [1]

      W. Alabi, L. Atanda, R. Jermy, S. Al-Khattaf. Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts[J]. Chem. Eng. J., 2012,195:276-288.  

    2. [2]

      A.A. Rownaghi, J. Hedlund. Methanol to gasoline-range hydrocarbons:influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5[J]. Ind. Eng. Chem. Res., 2011,50:11872-11878. doi: 10.1021/ie201549j

    3. [3]

      X.M. Wang, J. Xu, G.D. Qi. Alkylation of benzene with methane over ZnZSM-5 zeolites studied with solid-state NMR spectroscopy[J]. J. Phys. Chem. C, 2013,117:4018-4023. doi: 10.1021/jp310872a

    4. [4]

      X.X. Guan, N. Li, G.J. Wu. Para-selectivity of modified HZSM-5 zeolites by nitridation for ethylation of ethylbenzene with ethanol[J]. J. Mol. Catal. A Chem., 2006,248:220-225. doi: 10.1016/j.molcata.2005.12.032

    5. [5]

      S. Inagaki, S. Shinoda, Y. Kaneko. Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins[J]. ACS Catal., 2013,3:74-78. doi: 10.1021/cs300426k

    6. [6]

      C.H. Christensen, K. Johannsen, I. Schmidt, C.H. Christensen. Catalytic benzene alkylation over mesoporous zeolite single crystals:Improving activity and selectivity with a new family of porous materials[J]. . Am. Chem. Soc., 2003,125:13370-13371. doi: 10.1021/ja037063c

    7. [7]

      H.L. Hu, Q.F. Zhang, J. Cen, X.N. Li. Catalytic activity of Pt modified hierarchical ZSM-5 catalysts in benzene alkylation with methanol[J]. Catal. Lett., 2015,145:715-722. doi: 10.1007/s10562-014-1458-3

    8. [8]

      H.L. Hu, Q.F. Zhang, J. Cen, X.N. Li. High suppression of the formation of ethylbenzene in benzene alkylation with methanol over ZSM-5 catalyst modified by platinum[J]. Catal. Commun., 2014,57:129-133. doi: 10.1016/j.catcom.2014.08.017

    9. [9]

      M.O. Adebajo, M.A. Long. The contribution of the methanol-to-aromatics reaction to benzene methylation over ZSM-5 catalysts[J]. Catal. Commun., 2003,4:71-76. doi: 10.1016/S1566-7367(02)00259-5

    10. [10]

      H.L. Hu, J.H. Lyu, Q.T. Wang. Alkylation of benzene with methanol over hierarchical porous ZSM-5:synergy effects of hydrogen atmosphere and zinc modification[J]. RSC Adv., 2015,5:32679-32684. doi: 10.1039/C5RA03048J

    11. [11]

      H.L. Hu, J.H. Lyu, J. Cen. Promoting effects of MgO and Pd modification on the catalytic performance of hierarchical porous ZSM-5 for catalyzing benzene alkylation with methanol[J]. RSC Adv., 2015,5:63044-63049. doi: 10.1039/C5RA12589H

    12. [12]

      D.S. Mao, W.M. Yang, J.C. Xia. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxidemodified HZSM-5 as a dehydration component[J]. J. Catal., 2005,230:140-149. doi: 10.1016/j.jcat.2004.12.007

    13. [13]

      F. Dogan, K.D. Hammond, G.A. Tompsett. Searching for microporous, strongly basic catalysts:experimental and calculated 29Si NMR spectra of heavily nitrogen-doped Y zeolites[J]. J. Am. Chem. Soc., 2009,131:11062-11079. doi: 10.1021/ja9031133

    14. [14]

      C.M. Zhang, Z. Xu, K. Wan, Q. Liu. Synthesis, characterization and catalytic properties of nitrogen-incorporated ZSM-5 molecular sieves with bimodal pores[J]. Appl. Catal. A Gen., 2004,258:55-61. doi: 10.1016/j.apcata.2003.08.012

    15. [15]

      Q.H. Zeng, X. Bai, J.J. Zheng, J.Q. Chen, R.F. Li. Growth of ZSM-5 crystals within hollow β-zeolite[J]. Chin. Chem. Lett., 2011,22:1103-1106. doi: 10.1016/j.cclet.2011.04.006

    16. [16]

      J. Shi, J.W. Teng, Y.D. Wang, Y. Tang, Z.K. Xie. Precise construction on the structure of zeolite microcapsules[J]. Chin. Chem. Lett., 2015,26:1409-1414. doi: 10.1016/j.cclet.2015.06.001

    17. [17]

      J.R. Anderson, T. Mole, V. Christov. Mechanism of some conversions over ZSM-5 catalyst[J]. J.Catal., 1980,61:477-484. doi: 10.1016/0021-9517(80)90394-2

    18. [18]

      W.W. Kaeding. Conversion of methanol to hydrocarbons[J]. J. Catal., 1988,114:271-276. doi: 10.1016/0021-9517(88)90030-9

    19. [19]

      H.L. Hu, J.H. Lv, J.Y. Rui. The effect of Si/Al ratio on the catalytic performance of hierarchical porous ZSM-5 for catalyzing benzene alkylation with methanol[J]. Catal. Sci. Technol., 2016,6:2647-2652. doi: 10.1039/C5CY01976A

    20. [20]

      A.Zweig, D.L.Maricle. Mechanismofpreannihilativeelectrochemiluminescence[J]. J. Phys. Chem., 1968,72:377-378. doi: 10.1021/j100847a084

    21. [21]

      S. Ernst, M. Hartmann, S. Sauerbeck, T. Bongers. A novel family of solid basic catalysts obtained by nitridation of crystalline microporous aluminosilicates and aluminophosphates[J]. Appl. Catal. A Gen., 2000,200:117-123. doi: 10.1016/S0926-860X(00)00646-3

    22. [22]

      A.J. Han, H.Y. He, J. Guo. Studies on structure and acid-base properties of high silica MFI-type zeolite modified with methylamine[J]. Micropor. Mesopor. Mat., 2005,79:177-184. doi: 10.1016/j.micromeso.2004.11.001

    23. [23]

      K.D. Hammond, F. Dogan, G.A. Tompsett. Spectroscopic signatures of nitrogen-substituted zeolites[J]. J. Am. Chem. Soc., 2008,130:14912-14913. doi: 10.1021/ja8044844

    24. [24]

      V. Agarwal, G.W. Huber, W.C. Conner, S.M. Auerbach. DFT study of nitrided zeolites:Mechanism of nitrogen substitution in HY and silicalite[J]. J. Catal., 2010,269:53-63. doi: 10.1016/j.jcat.2009.10.015

    25. [25]

      K. Narasimharao, M. Hartmann, H.H. Thiel, S. Ernst. Novel solid basic catalysts by nitridation of zeolite beta at low temperature[J]. Micropor. Mesopor. Mat., 2006,90:377-383. doi: 10.1016/j.micromeso.2005.11.029

    26. [26]

      R. Astala, S.M. Auerbach. The properties of methylene-and amine-substituted zeolites from first principles[J]. J. Am. Chem. Soc., 2004,126:1843-1848. doi: 10.1021/ja037890d

    27. [27]

      G.J. Wu, X. Wang, Y.L. Yang. Confirmation of NH species in the framework of nitrogen-incorporated ZSM-5 zeolite by experimental and theoretical studies[J]. Micropor. Mesopor. Mat., 2010,127:25-31. doi: 10.1016/j.micromeso.2009.06.025

    28. [28]

      K.K. Zhu, J.M. Sun, J. Liu. Solvent evaporation assisted preparation of oriented nanocrystalline mesoporous MFI zeolites[J]. ACS Catal., 2011,1:682-690. doi: 10.1021/cs200085e

    29. [29]

      W. Deng, X. He, C. Zhang. Promoting xylene production in benzene methylation using hierarchically porous ZSM-5 derived from a modified drygel route[J]. Chin. J. Chem. Eng., 2014,22:921-929. doi: 10.1016/j.cjche.2014.06.009

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    4. [4]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    5. [5]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    6. [6]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    7. [7]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    8. [8]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    9. [9]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    10. [10]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    13. [13]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    14. [14]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    15. [15]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    16. [16]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    17. [17]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    18. [18]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    19. [19]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    20. [20]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

Metrics
  • PDF Downloads(3)
  • Abstract views(678)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return