Citation: Deng Liang, Yang Wen-Hui, Lyu Xing, Wei Shu-Feng, Wang Zheng, Wang Hui-Xian. In situ NMR diffusion coefficients assessment of lithium ion conductor using electrochemical priors and Arrhenius constraint-A computational study[J]. Chinese Chemical Letters, ;2017, 28(2): 362-366. doi: 10.1016/j.cclet.2016.10.009 shu

In situ NMR diffusion coefficients assessment of lithium ion conductor using electrochemical priors and Arrhenius constraint-A computational study

  • Corresponding author: Deng Liang, dengl@pku.edu.cn;dengl@mail.iee.ac.cn
  • Received Date: 30 May 2016
    Revised Date: 27 July 2016
    Accepted Date: 2 September 2016
    Available Online: 15 February 2016

Figures(8)

  • In situ NMR measurements of the diffusion coefficients, including an estimate of signal strength, of lithium ion conductor using diffusion-weighting pulse sequence are performed in this study. A cascade bilinear model is proposed to estimate the diffusion sensitivity factors of pulsed-field gradient using prior information of the electrochemical performance and Arrhenius constraint. The model postulates that the active lithium nuclei participating electrochemical reaction are relevant to the NMR signal intensity, when discharge rate or temperature condition is varying. The electrochemical data and the NMR signal strength show a highly fit with the proposed model according our simulation and experiments. Furthermore, the diffusion time is constrained by temperature based on Arrhenius equation of reaction rates dependence. An experimental calculation of Li4Ti5O12 (LTO)/carbon nanotubes (CNTs) with the electrolyte evaluating at 20℃ is presented, which the b factor is estimated by the discharge rate.
  • 加载中
    1. [1]

      X.C. Deng, M. Hu, X.L. Wei. Nuclear magnetic resonance studies of the solvation structures of a high-performance nonaqueous redox flow electrolyte[J]. J. Power Sources., 2016,308:172-179. doi: 10.1016/j.jpowsour.2015.12.005

    2. [2]

      P.M. Richardson, A.M. Voice, I.M. Ward. Pulsed-field gradient NMR self diffusion and ionic conductivity measurements for liquid electrolytes containing LiBF4 and propylene carbonate[J]. Electrochim. Acta., 2014,130:606-618. doi: 10.1016/j.electacta.2014.03.072

    3. [3]

      X.W. Yan, X.H. Ren, S. Stapf, J.D. Wang, Y.R. Yang. Self-diffusion coefficients of organic solvents in linear and branched high density polyethylene particles measured by PFG NMR[J]. Chin. Chem. Lett., 2008,19:110-114. doi: 10.1016/j.cclet.2007.10.034

    4. [4]

      J. Li, Z.F. Geng, P. Liu, Z.W. Deng. NMR analysis of a pair of isomers[J]. Chin. Chem. Lett., 2012,23:1181-1184. doi: 10.1016/j.cclet.2012.07.008

    5. [5]

      C.M. Boyce, N.P. Rice, A.J. Sederman, J.S. Dennis, D .J. Holland, 11-interval PFG pulse sequence for improved measurement of fast velocities of fluids with high diffusivity in systems with short T2*[J]. J. Magn. Reson., 2016,265:67-76. doi: 10.1016/j.jmr.2016.01.023

    6. [6]

      Z.X. Miao, M.X. Jin, X. Liu. The application of HPLC and microprobe NMR spectroscopy in the identification of metabolites in complex biological matrices[J]. Anal. Bioanal. Chem., 2015,407:3405-3416. doi: 10.1007/s00216-015-8556-y

    7. [7]

      J.C. Chen, X.P. Wu, L. Shen. Identification of different tin species in SnO2 nanosheets with 119Sn solid-state NMR spectroscopy[J]. Chem. Phys. Lett., 2016,643:126-130. doi: 10.1016/j.cplett.2015.11.035

    8. [8]

      V. Bon, J. Pallmann, E. Eisbein. Characteristics of flexibility in metalorganic framework solid solutions of composition[Zn2(BME-bdc)x(DBbdc)2-xdabco]n:in situ powder X-ray diffraction, in situ NMR spectroscopy, and molecular dynamics simulations[J]. Microporous Mesoporous Mater., 2015,216:64-74. doi: 10.1016/j.micromeso.2015.02.042

    9. [9]

      P.J. Sideris, U.G. Nielsen, Z.h. Gan, C.P. Grey. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy[J]. Science., 2008,321:113-117. doi: 10.1126/science.1157581

    10. [10]

      K. Hayamizu, Y. Matsuda, M. Matsui, N. Imanishi. Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method[J]. Solid State Nucl. Magn. Reson., 2015,70:21-27. doi: 10.1016/j.ssnmr.2015.05.002

    11. [11]

      K. Hayamizu, Y. Aihara. Lithium ion diffusion in solid electrolyte (Li2S)7(P2S5)3 measured by pulsed-gradient spin-echo 7Li NMR spectroscopy[J]. Solid State Ionics., 2013,238:7-14. doi: 10.1016/j.ssi.2013.02.014

    12. [12]

      T.Y. Wu, S.G. Su, Y.H. Wang. Diffusion coefficients spin-lattice relaxation times, and chemical shift variations of NMR spectra in LiTFSI-doped ether-and allyl-functionalized dicationic ionic liquids[J]. J. Taiwan Inst. Chem. Eng., 2016,60:138-150. doi: 10.1016/j.jtice.2015.10.047

    13. [13]

      G.T.M. Nguyen, A.L. Michan, A. Fannir. Self-standing single lithium ion conductor polymer network with pendant trifluoromethanesulfonylimide groups:Li+ diffusion coefficients from PFGSTE NMR[J]. Eur. Polym. J., 2013,49:4108-4117. doi: 10.1016/j.eurpolymj.2013.09.016

    14. [14]

      N.M. Trease, L.N. Zhou, H.J. Chang, B.Y. Zhu, C.P. Grey. In situ NMR of lithium ion batteries:bulk susceptibility effects and practical considerations[J]. Solid State Nucl. Magn. Reson., 2012,42:62-70. doi: 10.1016/j.ssnmr.2012.01.004

    15. [15]

      R. Bhattacharyya, B. Key, H.L. Chen. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nat. Mater., 2010,9:504-510. doi: 10.1038/nmat2764

    16. [16]

      S. Chandrashekar, N.M. Trease, H.J. Chang. 7Li MRI of Li batteries reveals location of microstructural lithium[J]. Nat. Mater., 2012,11:311-315. doi: 10.1038/nmat3246

    17. [17]

      E.O. Stejskal, J.E. Tanner. Spin diffusion measurements:spin echoes in the presence of a time-dependent field gradient[J]. J. Chem. Phys., 1965,42:288-292. doi: 10.1063/1.1695690

    18. [18]

      J.H. Burdette, D.D. Durden, A.D. Elster, Y.F. Yen. High b-value diffusionweighted MRI of normal brain[J]. J. Comput. Assist. Tomogr., 2001,25:515-519. doi: 10.1097/00004728-200107000-00002

    19. [19]

      P.Z. Sun. Improved diffusion measurement in heterogeneous systems using the magic asymmetric gradient stimulated echo (MAGSTE) technique[J]. J. Magn. Reson., 2007,187:177-183. doi: 10.1016/j.jmr.2007.04.011

    20. [20]

      J.A. Lehmann-Horn, J.O. Walbrecker. NMR image reconstruction in nonlinearly varying magnetic fields:a numerical algorithm[J]. IEEE Trans. Magn., 2013,49:5430-5437. doi: 10.1109/TMAG.2013.2266637

    21. [21]

      J. Mattiello, P.J. Basser, D. Lebihan. Analytical expressions for the b matrix in NMR diffusion imaging and spectroscopy[J]. J. Magn. Reson. Ser. A., 1994,108:131-141. doi: 10.1006/jmra.1994.1103

    22. [22]

      H. Walderhaug, O. Söderman, D. Topgaard. Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods[J]. Prog. Nucl. Magn. Reson. Spectrosc., 2010,56:406-425. doi: 10.1016/j.pnmrs.2010.04.002

    23. [23]

      E. Özarslan, M. Memiç, A.V. Avram, M. Afzali, Rotating field gradient (RFG) MR offers improved orientational sensitivity, Proceedings of the IEEE 12th International Symposium on Biomedical Imaging, IEEE, New York, NY, 2015, pp. 955-958.

    24. [24]

      A.B. Barnes, G. De Paëpe, P.C.A. van der Wel. High-field dynamic nuclear polarization for solid and solution biological NMR[J]. Appl. Magn. Reson., 2008,34:237-263. doi: 10.1007/s00723-008-0129-1

    25. [25]

      B.J. Soher, K. Young, A. Bernstein, Z. Aygulac, A.A. Maudsley. GAVA:spectral simulation for in vivo MRS applications,[J]. J. Magn. Reson., 2007,185:291-299. doi: 10.1016/j.jmr.2007.01.005

    26. [26]

      L. Deng, W.H. Yang, S.X. Zhou, J.T. Chen. Effect of carbon nanotubes addition on electrochemical performance and thermal stability of Li4Ti5O12 anode in commercial LiMn2O4/Li4Ti5O12 full-cell[J]. Chin. Chem. Lett., 2015,26:1529-1534. doi: 10.1016/j.cclet.2015.06.009

  • 加载中
    1. [1]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    2. [2]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    3. [3]

      Xiaohan Zhang Bo Xiao . Facilitating ultra-fast lithium ion diffusion in face-centered cubic oxides via over-stoichiometric face-sharing configurations. Chinese Journal of Structural Chemistry, 2025, 44(2): 100419-100419. doi: 10.1016/j.cjsc.2024.100419

    4. [4]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    5. [5]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    6. [6]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    7. [7]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

    8. [8]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    9. [9]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    10. [10]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    11. [11]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    12. [12]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    13. [13]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    14. [14]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    15. [15]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    16. [16]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    19. [19]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    20. [20]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return