Graphene oxide-MnO2 nanocomposite-modified glassy carbon electrode as an efficient sensor for H2O2
- Corresponding author: Zhang Wei-De, zhangwd@scut.edu.cn
Citation:
Xu Hui-Li, Zhang Wei-De. Graphene oxide-MnO2 nanocomposite-modified glassy carbon electrode as an efficient sensor for H2O2[J]. Chinese Chemical Letters,
;2017, 28(1): 143-148.
doi:
10.1016/j.cclet.2016.10.008
Ruoff R.. Graphene:calling all chemists[J]. Nat. Nanotechnol., 2008,3:10-11. doi: 10.1038/nnano.2007.432
Srivastava S.K., Pionteck J.. Recent advances in preparation, structure, properties and applications of graphite oxide[J]. J. Nanosci. Nanotechnol., 2015,15:1984-2000. doi: 10.1166/jnn.2015.10047
Stankovich S., Dikin D.A., Dommett G.H.B.. Graphene-based composite materials[J]. Nature, 2006,442:282-286. doi: 10.1038/nature04969
Seredych M., Bandosz T.J.. Removal of ammonia by graphite oxide via its intercalation and reactive adsorption[J]. Carbon, 2007,45:2130-2132. doi: 10.1016/j.carbon.2007.06.007
Khan M., Tahir M.N., Adil S.F.. Graphene based metal and metal oxide nanocomposites:synthesis, properties and their applications[J]. J. Mater. Chem. A, 2015,3:18753-18808. doi: 10.1039/C5TA02240A
Park S., Ruoff R.S.. Chemical methods for the production of graphenes[J]. Nat. Nanotechnol., 2009,4:217-224. doi: 10.1038/nnano.2009.58
Bissessur R., Scully S.F.. Intercalation of solid polymer electrolytes into graphite oxide[J]. Solid State Ion., 2007,178:877-882. doi: 10.1016/j.ssi.2007.02.030
Paredes J.I., Villar S., Rodil -, Mart A., nez í, Alonso -, Tasc J.M.D.. Graphene oxide dispersions in organic solvents[J]. Langmuir, 2008,24:10560-10564. doi: 10.1021/la801744a
Compton O.C., Nguyen S.B.T.. Graphene oxide, highly reduced graphene oxide, and graphene:versatile building blocks for carbon-based materials[J]. Small, 2010,6:711-723. doi: 10.1002/smll.v6:6
Song Y., Luo Y.N., Zhu C.Z.. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials[J]. Biosens. Bioelectron., 2016,76:195-212. doi: 10.1016/j.bios.2015.07.002
Kim F., Cote L.J., Huang J.X.. Graphene oxide:surface activity and twodimensional assembly[J]. Adv. Mater., 2010,22:1954-1958. doi: 10.1002/adma.200903932
Zhu Y.W., Murali S., Cai W.W.. Graphene and graphene oxide:synthesis, properties, and applications[J]. Adv. Mater., 2010,22:3906-3924. doi: 10.1002/adma.201001068
Celik N., Balachandran W., Manivannan N.. Graphene-based biosensors:methods, analysis and future perspectives[J]. IET Circits Devices Syst., 2015,9:434-445. doi: 10.1049/iet-cds.2015.0235
Vashist S.K., Luong J.H.T.. Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites[J]. Carbon, 2015,84:519-550. doi: 10.1016/j.carbon.2014.12.052
Lawal A.T.. Synthesis and utilisation of graphene for fabrication of electrochemical sensors[J]. Talanta, 2015,131:424-443. doi: 10.1016/j.talanta.2014.07.019
Liu J.Q., Liu Z., Barrow C.J., Yang W.R.. Molecularly engineered graphene surfaces for sensing applications:a review[J]. Anal. Chim. Acta, 2015,859:1-19. doi: 10.1016/j.aca.2014.07.031
Wang Y., Li Y.M., Tang L.H., Lu J., Li J.H.. Application of graphene-modified electrode for selective detection of dopamine[J]. Electrochem. Commun., 2009,11:889-892. doi: 10.1016/j.elecom.2009.02.013
Yu G.H., Hu L.B., Vosgueritchian M.. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors[J]. Nano Lett., 2011,11:2905-2911. doi: 10.1021/nl2013828
Liu Z.X., Xing Y., Chen C.H., Zhao L.L., Suib S.L.. Framework doping of indium in manganese oxide materials:synthesis, characterization, and electrocatalytic reduction of oxygen[J]. Chem. Mater., 2008,20:2069-2071. doi: 10.1021/cm703553p
Chen J., Zhang W.D., Ye J.S.. Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite[J]. Electrochem. Commun., 2008,10:1268-1271. doi: 10.1016/j.elecom.2008.06.022
Xu C., Wang X.. Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates[J]. Small, 2009,5:2212-2217. doi: 10.1002/smll.v5:19
Xu C., Wu X.D., Zhu J.W., Wang X.. Synthesis of amphiphilic graphite oxide[J]. Carbon, 2008,46:386-389. doi: 10.1016/j.carbon.2007.11.045
Zhang L., Fang Z., Ni Y.H., Zhao G.C.. Direct electrocatalytic oxidation of hydrogen peroxide based on nafion and microspheres MnO2 modified glass carbon electrode[J]. Int. J. Electrochem. Sci., 2009,4:407-413.
Han Y., Zheng J.B., Dong S.Y.. A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites[J]. Electrochim. Acta, 2013,90:35-43. doi: 10.1016/j.electacta.2012.11.117
Hocevar S.B., Ogorevc B., Schachl K., Kalcher K.. Glucose microbiosensor based on MnO2 and glucose oxidase modified carbon fiber microelectrode[J]. Electroanalysis, 2004,16:1711-1716. doi: 10.1002/(ISSN)1521-4109
Zhang P., Guo D., Li Q.H.. Manganese oxide ultrathin nanosheets sensors for non-enzymatic detection of H2O2[J]. Mater. Lett., 2014,125:202-205. doi: 10.1016/j.matlet.2014.03.172
Dong S., Xi J.B., Wu Y.N.. High loading MnO2 nanowires on graphene paper:facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells[J]. Anal. Chim. Acta, 2015,853:200-206. doi: 10.1016/j.aca.2014.08.004
Xiao X.P., Song Y.H., Liu H.Y.. Electrospun carbon nanofibers with manganese dioxide nanoparticles for nonenzymatic hydrogen peroxide sensing[J]. J. Mater. Sci., 2013,48:4843-4850. doi: 10.1007/s10853-013-7202-3
Li L.M., Du Z.F., Liu S.. A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite[J]. Talanta, 2010,82:1637-1641. doi: 10.1016/j.talanta.2010.07.020
Xu B., Ye M.L., Yu Y.X., Zhang W.D.. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes[J]. Anal. Chim. Acta, 2010,674:20-26. doi: 10.1016/j.aca.2010.06.004
Jiang L.C., Zhang W.D.. Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing[J]. Electroanalysis, 2009,21:988-993. doi: 10.1002/elan.v21:8
Hai-Bo Huang , Fang-Long Sun , Ze Luo , Meng-Yu Sun , Ben-Hao Liu , Xu-Sheng Wang , Hua Tang . MOF@MOF hierarchical heterotructures for enhanced photocatalytic H2O2 production and furfuryl alcohol oxidation. Chinese Journal of Structural Chemistry, 2025, 44(11): 100717-100717. doi: 10.1016/j.cjsc.2025.100717
Jincheng Zhang , Mengjie Sun , Jiali Ren , Rui Zhang , Min Ma , Qingzhong Xue , Jian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491
Ao XIA , Botao YU , Jun CHEN , Guoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Yuanwei Ma , Jigang Wang , Zhaodi Yan , Qiang Liu , Lanyan Li , Zhongfang Li , Likai Wang . Ultrathin Pd based bimetallic nanowires as highly efficient ampere-level pH-universal water splitting. Chinese Chemical Letters, 2026, 37(1): 111724-. doi: 10.1016/j.cclet.2025.111724
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
Haoting Wang , Mengfan Luo , Yuzhong Wang , Jialong Yin , Heng Zhang , Jia Zhao , Bo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Xuyun Lu , Yanan Chang , Shasha Wang , Xiaoxuan Li , Jianchun Bao , Ying Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Zheng Liu , Yuqing Bian , Graham Dawson , Jiawei Zhu , Kai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272
Menglin Zhou , Lin Zhang , Xuefei Shan , Fengqin Chang , Wentong Chen , Xuguang An , Guangzhi Hu . Hydrangea-like B/N co-doped carbon-based electrochemical sensors for the efficient and sensitive detection of aristolochic acid in Aristolochia. Chinese Chemical Letters, 2025, 36(12): 111073-. doi: 10.1016/j.cclet.2025.111073
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Zhaomin Tang , Qian He , Jianren Zhou , Shuang Yan , Li Jiang , Yudong Wang , Chenxing Yao , Huangzhao Wei , Keda Yang , Jiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742
Changzhu Huang , Wei Dai , Shimao Deng , Yixin Tian , Xiaolin Liu , Jia Lin , Hong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429
Zhen Li , Sujuan Zhang , Zhongliao Wang , Jinfeng Zhang , Gaoli Chen , Shifu Chen . Rational design of S-scheme CdS/MnO2 heterojunctions for high-value photothermal synergistic catalytic oxidation of toluene. Acta Physico-Chimica Sinica, 2026, 42(4): 100179-0. doi: 10.1016/j.actphy.2025.100179
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125