A perspective on general direction and challenges facing antimicrobial peptides
- Corresponding author: Niu Zhong-Wei, niu@mail.ipc.ac.cn (Z.-W. Niu)
Citation:
Zhu Meng, Liu Peng, Niu Zhong-Wei. A perspective on general direction and challenges facing antimicrobial peptides[J]. Chinese Chemical Letters,
;2017, 28(4): 703-708.
doi:
10.1016/j.cclet.2016.10.001
Velema W.A., Berg J.P.van der, Hansen M.J.. Optical control of antibacterial activity[J]. Nat.Chem., 2013,5:924-928. doi: 10.1038/nchem.1750
Blaser M.J.. Antibiotic use and its consequences for the normal microbiome[J]. Science, 2016,352:544-545. doi: 10.1126/science.aad9358
Beatson S.A., Walker M.J.. Tracking antibiotic resistance[J]. Science, 2014,345:1454-1455. doi: 10.1126/science.1260471
Wang S.Z., Cameron S.A., Clinch K.. New antibiotic candidates against Helicobacter pylori[J]. J.Am.Chem.Soc., 2015,137:14275-14280. doi: 10.1021/jacs.5b06110
Ling L.L., Schneider T., Peoples A.J.. A new antibiotic kills pathogens without detectable resistance[J]. Nature, 2015,517:455-459. doi: 10.1038/nature14098
Yuan H.X., Wang B., Lv F.T., Liu L.B., Wang S.. Conjugated-polymer-based energy-transfer systems for antimicrobial and anticancer applications[J]. Adv. Mater., 2014,26:6978-6982. doi: 10.1002/adma.v26.40
Bai H.T., Yuan H.X., Nie C.Y.. A supramolecular antibiotic switch for antibacterial regulation[J]. Angew.Chem.Int.Ed.Engl., 2015,54:13208-13213. doi: 10.1002/anie.201504566
Li L., Ma H.L., Qi G.B.. Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection[J]. Adv.Mater., 2016,28:254-262. doi: 10.1002/adma.201503437
Li L.L., Xu J.H., Qi G.B.. Core-shell supramolecular gelatin nanoparticles for adaptive and on-demand antibiotic delivery[J]. ACS Nano, 2014,8:4975-4983. doi: 10.1021/nn501040h
Bahar A.A., Ren D.C.. Antimicrobial peptides[J]. Pharmaceuticals, 2013,6:1543-1575. doi: 10.3390/ph6121543
S. Sayed, M. A. Jardine, Antimicrobial biopolymers, in: A. Tiwari, L. Uzun(Eds. ), Advanced Functional Materials, John Wiley & Sons, Inc. , Hoboken, NJ, 2015, pp. 493-533.
J. F. Marcos, P. Manzanares, Antimicrobial peptides, in: J. M. Lagarón, M. J. Ocio, A. López-Rubio(Eds. ), Antimicrobial Polymers, John Wiley & Sons, Inc. , Hoboken, NJ, 2011, pp. 195-225.
Waghu F.H., Gopi L., Barai R.S.. CAMP:collection of sequences and structures of antimicrobial peptides[J]. Nucleic Acids Res., 2014,42:D1154-D1158. doi: 10.1093/nar/gkt1157
Sun J.B., Xia Y.Q., Li D., Du Q., Liang D.H.. Relationship between peptide structure and antimicrobial activity as studied by de novo designed peptides[J]. Biochim.Biophys.Acta, 2014,1838:2985-2993. doi: 10.1016/j.bbamem.2014.08.018
Karal M.A.S., Alam J.M., Takahashi T., Levadny V., Yamazaki M.. Stretch-activated pore of the antimicrobial peptide, Magainin 2[J]. Langmuir, 2015,31:3391-3401. doi: 10.1021/la503318z
Juhaniewicz J., Szyk-Warszyńska L., Warszyński P., Sńk S.. Interaction of cecropin B with zwitterionic and negatively charged lipid bilayers immobilized at gold electrode surface[J]. Electrochim.Acta, 2016,204:206-217. doi: 10.1016/j.electacta.2016.04.080
Munyuki G., Jackson G.E., Venter G.A.. β-sheet structures and dimer models of the two major tyrocidines, antimicrobial peptides from Bacillus aneurinolyticus[J]. Biochemistry, 2013,52:7798-7806. doi: 10.1021/bi401363m
Maurice C.F., Haiser H.J., Turnbaugh P.J.. Xenobiotics shape the physiology and gene expression of the active human gut microbiome[J]. Cell, 2013,152:39-50. doi: 10.1016/j.cell.2012.10.052
Neale C., Hsu J.C.Y., Yip C.M., Pomès R.. Indolicidin binding induces thinning of a lipid bilayer[J]. Biophys.J., 2014,106:L29-L31. doi: 10.1016/j.bpj.2014.02.031
Rosa R.D., Santini A., Fievet J.. Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas[J]. PLoS One, 2011,6e25594. doi: 10.1371/journal.pone.0025594
Dias R.D.O., Franco O.L.. Cysteine-stabilized αβ defensins:from a common fold to antibacterial activity[J]. Peptides, 2015,72:64-72. doi: 10.1016/j.peptides.2015.04.017
Xia L.J., Wu Y.L., Kang S.. CecropinXJ, a silkworm antimicrobial peptide, induces cytoskeleton disruption in esophageal carcinoma cells[J]. Acta Biochim. Biophys.Sin., 2014,46:867-876. doi: 10.1093/abbs/gmu070
Loeffler J.M., Nelson D., Fischetti V.A.. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase[J]. Science, 2001,294:2170-2172. doi: 10.1126/science.1066869
Marcos J.F., Gandía M.. Antimicrobial peptides:to membranes and beyond[J]. Expert Opin.Drug Discov., 2009,4:659-671. doi: 10.1517/17460440902992888
Wang G.S., Li X., Wang Z.. APD3:the antimicrobial peptide database as a tool for research and education[J]. Nucleic Acids Res., 2016,44:D1087-D1093. doi: 10.1093/nar/gkv1278
Zasloff M.. Antimicrobial peptides of multicellular organisms[J]. Nature, 2002,415:389-395. doi: 10.1038/415389a
Xu X.Q., Lai R.. The chemistry and biological activities of peptides from amphibian skin secretions[J]. Chem.Rev., 2015,115:1760-1846. doi: 10.1021/cr4006704
J. M. Conlon, A. Sonnevend, Antimicrobial peptides in frog skin secretions, in: A. Giuliani, A. C. Rinaldi(Eds. ), Antimicrobial Peptides, Humana Press, Totowa, NJ, 2010, pp. 3-14.
Peters B.M., Shirtliff M.E., Jabra-Rizk M.A.. Antimicrobial peptides:primeval molecules or future drugs[J]. PLoS Pathog., 2010,6e1001067. doi: 10.1371/journal.ppat.1001067
Liu S.L., Du X.B., Kong J.L., Jiang H.. A novel plant defensin from Chinese mistletoe, Viscum coloratum(Kom.)Nakai[J]. Chin.Chem.Lett., 2007,18:55-58. doi: 10.1016/j.cclet.2006.11.007
Zhao R.L., Han J.Y., Han W.Y.. Molecular cloning of two novel temporins from lithobates catesbeianus and studying of their antimicrobial mechanisms[J]. Prog.Biochem.Biophys., 2009,36:1064-1070. doi: 10.3724/SP.J.1206.2009.00033
Anaya-López J.L., López-Meza J.E., Ochoa-Zarzosa A.. Bacterial resistance to cationic antimicrobial peptides[J]. Crit.Rev.Microbiol., 2013,39:180-195. doi: 10.3109/1040841X.2012.699025
Ortega M.A., Hao Y., Zhang Q.. Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB[J]. Nature, 2014,517:509-512. doi: 10.1038/nature13888
de Oliveira Junior A.A., Silva de Araújo Couto H.G., Barbosa A.A.T., Carnelossi M.A.G., de Moura T.R.. Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruit juices[J]. Int.J.Food Microbiol., 2015,211:38-43. doi: 10.1016/j.ijfoodmicro.2015.06.029
Li J., Neubauer P.. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides[J]. N.Biotechnol., 2014,31:579-585. doi: 10.1016/j.nbt.2014.03.006
Strieker M., Tanović A., Marahiel M.A.. Nonribosomal peptide synthetases: structures and dynamics[J]. Curr.Opin.Struct.Biol., 2010,20:234-240. doi: 10.1016/j.sbi.2010.01.009
Lande R., Botti E., Jandus C.. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis[J]. Nat.Commun., 2014,55621. doi: 10.1038/ncomms6621
Marcos J.F., Muñoz A., Pérez-Payá E., Misra S., López-García B.. Identification and rational design of novel antimicrobial peptides for plant protection[J]. Annu. Rev.Phytopathol., 2008,46:273-301. doi: 10.1146/annurev.phyto.121307.094843
Desai P.N., Shrivastava N., Padh H.. Production of heterologous proteins in plants:strategies for optimal expression[J]. Biotechnol.Adv., 2010,28:427-435. doi: 10.1016/j.biotechadv.2010.01.005
S. Albayrak, J. M. Rouillard, E. Gulari, Cloning and expression of antimicrobial peptides in yeast, Proceedings of AIChE100-2008 AIChE Annual Meeting, AIChE, Philadelphia, PA, 2008.
Bommarius B., Jenssen H., Elliott M.. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli[J]. Peptides, 2010,31:1957-1965. doi: 10.1016/j.peptides.2010.08.008
Yun M.F., Hui L., Li H.Z.. Expression of tandem repeat Cecropin B in Chlamydomonas reinhardtii and its antibacterial effect[J]. Prog.Biochem. Biophys., 2012,39:344-351. doi: 10.3724/SP.J.1206.2010.00671
Ishida H., Nguyen L.T., Gopal R., Aizawa T., Vogel H.J.. Overexpression of antimicrobial, anticancer, and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system[J]. J.Am.Chem.Soc., 2016,138:11318-11326. doi: 10.1021/jacs.6b06781
Wade J.D., Lin F., Hossain M.A., Dawson R.M.. Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal growth inhibitor[J]. Amino Acids, 2012,43:2279-2283. doi: 10.1007/s00726-012-1305-z
Ramos R., Moreira S., Rodrigues A., Gama M., Domingues L.. Recombinant expression and purification of the antimicrobial peptide magainin-2[J]. Biotechnol.Prog., 2013,29:17-22. doi: 10.1002/btpr.1650
Oman T.J., Boettcher J.M., Wang H., Okalibe X.N., van der Donk W.A.. Sublancin is not a lantibiotic but an S-linked glycopeptide[J]. Nat.Chem.Biol., 2011,7:78-80. doi: 10.1038/nchembio.509
Rifflet A., Gavalda S., Téné N.. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum[J]. Peptides, 2012,38:363-370. doi: 10.1016/j.peptides.2012.08.018
Costa F., Carvalho I.F., Montelaro R.C., Gomes P., Martins M.C.L.. Covalent immobilization of antimicrobial peptides(AMPs)onto biomaterial surfaces[J]. Acta Biomater., 2011,7:1431-1440. doi: 10.1016/j.actbio.2010.11.005
Scott R.W., DeGrado W.F., Tew G.N.. De novo designed synthetic mimics of antimicrobial peptides[J]. Curr.Opin.Biotechnol., 2008,19:620-627. doi: 10.1016/j.copbio.2008.10.013
Gupta M., Chauhan V.S.. De novo design of α, β-didehydrophenylalanine containing peptides:from models to applications[J]. Biopolymers, 2011,95:161-173. doi: 10.1002/bip.v95.3
Fox J.L.. Antimicrobial peptides stage a comeback[J]. Nat.Biotechnol., 2013,31379. doi: 10.1038/nbt.2572
Qi X.B., Poernomo G., Wang K.. Covalent immobilization of nisin on multi-walled carbon nanotubes:superior antimicrobial and anti-biofilm properties[J]. Nanoscale, 2011,3:1874-1880. doi: 10.1039/c1nr10024f
Sahariah P., Sørensen K.K., Hjálmarsdóttir M.á.. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers[J]. Chem.Commun., 2015,51:11611-11614. doi: 10.1039/C5CC04010H
Zhou C.C., Wang M.Z., Zou K.D.. Antibacterial polypeptide-grafted chitosan-based nanocapsules as an armed carrier of anticancer and antiepileptic drugs[J]. ACS Macro Lett., 2013,2:1021-1025. doi: 10.1021/mz400480z
Tan M.L., Choong P.F.M., Dass C.R.. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery[J]. Peptides, 2010,31:184-193. doi: 10.1016/j.peptides.2009.10.002
Brogden K.A., Ackermann M., Huttner K.M.. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial[J]. Antimicrob. Agents Chemother., 1997,41:1615-1617.
Steffen H., Rieg S., Wiedemann I.. Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge[J]. Antimicrob.Agents Chemother., 2006,50:2608-2620. doi: 10.1128/AAC.00181-06
Dennison S.R., Mura M., Harris F.. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5[J]. Biochim.Biophys.Acta, 2015,1848:1111-1118. doi: 10.1016/j.bbamem.2015.01.014
Chan D.I., Prenner E.J., Vogel H.J.. Tryptophan-and arginine-rich antimicrobial peptides:structures and mechanisms of action[J]. Biochim.Biophys.Acta, 2006,1758:1184-1202. doi: 10.1016/j.bbamem.2006.04.006
Pieta P., Majewska M., Su Z.F.. Physicochemical studies on orientation and conformation of a new bacteriocin BacSp222 in a planar phospholipid bilayer[J]. Langmuir, 2016,32:5653-5662. doi: 10.1021/acs.langmuir.5b04741
Bechinger B., Lohner K.. Detergent-like actions of linear amphipathic cationic antimicrobial peptides[J]. Biochim.Biophys.Acta, 2006,1758:1529-1539. doi: 10.1016/j.bbamem.2006.07.001
Wimley W.C.. Describing the mechanism of antimicrobial peptide action with the interfacial activity model[J]. ACS Chem.Biol., 2010,5:905-917. doi: 10.1021/cb1001558
Park S.C., Kim J.Y., Shin S.O.. Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy[J]. Biochem. Biophys.Res.Commun., 2006,343:222-228. doi: 10.1016/j.bbrc.2006.02.090
Sengupta D., Leontiadou H., Mark A.E., Marrink S.J.. Toroidal pores formed by antimicrobial peptides show significant disorder[J]. Biochim.Biophys.Acta, 2008,1778:2308-2317. doi: 10.1016/j.bbamem.2008.06.007
Lee M.O., Jang H.J., Han J.Y., Womack J.E.. Chicken NK-lysin is an alpha-helical cationic peptide that exerts its antibacterial activity through damage of bacterial cell membranes[J]. Poult.Sci., 2014,93:864-870. doi: 10.3382/ps.2013-03670
Pokorny A., Almeida P.F.F.. Permeabilization of raft-containing lipid vesicles by δ-lysin:a mechanism for cell sensitivity to cytotoxic peptides[J]. Biochemistry, 2005,44:9538-9544. doi: 10.1021/bi0506371
Zhang Y.M., Rock C.O.. Transcriptional regulation in bacterial membrane lipid synthesis[J]. J.Lipid Res., 2009,50:S115-S119.
Madeo F., Herker E., Wissing S.. Apoptosis in yeast[J]. Curr.Opin.Microbiol., 2004,7:655-660. doi: 10.1016/j.mib.2004.10.012
Vriens K., Cools T.L., Harvey P.J.. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms[J]. Peptides, 2016,75:71-79. doi: 10.1016/j.peptides.2015.11.001
Narasimhan M.L., Damsz B., Coca M.A.. A plant defense response effector induces microbial apoptosis[J]. Mol.Cell, 2001,8:921-930. doi: 10.1016/S1097-2765(01)00365-3
Puri S., Edgerton M.. How does it kill? Understanding the candidacidal mechanism of salivary histatin 5[J]. Eukaryot.Cell, 2014,13:958-964. doi: 10.1128/EC.00095-14
Borgwardt D.S., Martin A.D., Van Hemert J.R.. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B(HagB)and alters HagB-induced chemokine responses[J]. Sci.Rep., 2014,43904.
Orrapin S., Intorasoot S.. Recombinant expression of novel protegrin-1 dimer and LL-37-linker-histatin-5 hybrid peptide mediated biotin carboxyl carrier protein fusion partner[J]. Protein Expr.Purif., 2014,93:46-53. doi: 10.1016/j.pep.2013.10.010
Shah P., Shih-Hsiao F., Ho Y.H., Chen C.S.. The proteome targets of intracellular targeting antimicrobial peptides[J]. Proteomics, 2016,16:1225-1237. doi: 10.1002/pmic.v16.8
Jang J.H., Kim Y.J., Kim H., Kim S.C., Cho J.H.. Buforin Ⅱb induces endoplasmic reticulum stress-mediated apoptosis in HeLa cells[J]. Peptides, 2015,69:144-149. doi: 10.1016/j.peptides.2015.04.024
Muñoz A., Marcos J.F., Read N.D.. Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26[J]. Mol.Microbiol., 2012,85:89-106. doi: 10.1111/j.1365-2958.2012.08091.x
Copolovici D.M., Langel K., Eriste E., Langel Ü.. Cell-penetrating peptides: design, synthesis, and applications[J]. ACS Nano, 2014,8:1972-1994. doi: 10.1021/nn4057269
N. Sitaram, Structure-function Correlations in Antibacterial and Cytolytic Peptides: Studies on Seminalplasmin: Seminalplasmin-derived and Related Synthetic Peptides, Jawaharlal Nehru University, Delhi, 2014.
Giuliani A., Pirri G., Nicoletto S.. Antimicrobial peptides:an overview of a promising class of therapeutics[J]. Open Life Sci., 2007,2:1-33. doi: 10.2478/s11535-007-0010-5
Kang S.J., Park S.J., Mishig-Ochir T., Lee B.J.. Antimicrobial peptides:therapeutic potentials[J]. Expert Rev.Anti Infect.Ther., 2014,12:1477-1486. doi: 10.1586/14787210.2014.976613
Zhu X., Dong N., Wang Z.Y.. Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity[J]. Acta Biomater., 2014,10:244-257. doi: 10.1016/j.actbio.2013.08.043
Ding Y.L., Wang W., Fan M.. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms[J]. Peptides, 2014,52:61-67. doi: 10.1016/j.peptides.2013.11.020
Bagheri M., Beyermann M., Dathe M.. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum[J]. Antimicrob.Agents Chemother., 2009,53:1132-1141. doi: 10.1128/AAC.01254-08
Xu Luo , Jinwen Xiao , Qiming Yang , Xiaolong Lu , Qianjun Huang , Xiaojun Ai , Bo Li , Li Sun , Long Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
Guanxiong Yu , Chengkai Xu , Huaqiang Ju , Jie Ren , Guangpeng Wu , Chengjian Zhang , Xinghong Zhang , Zhen Xu , Weipu Zhu , Hao-Cheng Yang , Haoke Zhang , Jianzhao Liu , Zhengwei Mao , Yang Zhu , Qiao Jin , Kefeng Ren , Ziliang Wu , Hanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893
Yang Xu , Le Ma , Yang Wang , Chunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Hong Zhang , Cui-Ping Li , Li-Li Wang , Zhuo-Da Zhou , Wen-Sen Li , Ling-Yi Kong , Ming-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351
Yaxian Liang , Qingyi Li , Liwei Hu , Ruohan Zhai , Fan Liu , Lin Tan , Xiaofei Wang , Huixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459
Hao Sun , Shengke Li , Qian Liu , Minzan Zuo , Xueqi Tian , Kaiya Wang , Xiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999
Yunfen Gao , Liying Wang , Chufan Zhou , Yi Zhao , Hai Huang , Jun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
Yixuan Wang , Jiexin Li , Zhihao Shang , Chengcheng Feng , Jianmin Gu , Maosheng Ye , Ran Zhao , Danna Liu , Jingxin Meng , Shutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Yujie Li , Ya-Nan Wang , Yin-Gen Luo , Hongcai Yang , Jinrui Ren , Xiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576