Citation: Zhu Meng, Liu Peng, Niu Zhong-Wei. A perspective on general direction and challenges facing antimicrobial peptides[J]. Chinese Chemical Letters, ;2017, 28(4): 703-708. doi: 10.1016/j.cclet.2016.10.001 shu

A perspective on general direction and challenges facing antimicrobial peptides

  • Corresponding author: Niu Zhong-Wei, niu@mail.ipc.ac.cn (Z.-W. Niu)
  • Received Date: 1 September 2016
    Revised Date: 21 September 2016
    Accepted Date: 27 September 2016
    Available Online: 6 April 2016

Figures(2)

  • The emergence of drug resistant bacterium threatens the global public healthcare systems.The urgent need to obtain new antimicrobials has driven antimicrobial peptides(AMPs)research into spotlight.Here we give a brief introduction of the recent progress of AMPs regarding their structures, properties, production and modification, and antimicrobial mechanism.Thereby, this review will give an insight into the trends and challenges facing on this particular kind of antimicrobial materials.
  • 加载中
    1. [1]

      Velema W.A., Berg J.P.van der, Hansen M.J.. Optical control of antibacterial activity[J]. Nat.Chem., 2013,5:924-928. doi: 10.1038/nchem.1750

    2. [2]

      Blaser M.J.. Antibiotic use and its consequences for the normal microbiome[J]. Science, 2016,352:544-545. doi: 10.1126/science.aad9358

    3. [3]

      Beatson S.A., Walker M.J.. Tracking antibiotic resistance[J]. Science, 2014,345:1454-1455. doi: 10.1126/science.1260471

    4. [4]

      Wang S.Z., Cameron S.A., Clinch K.. New antibiotic candidates against Helicobacter pylori[J]. J.Am.Chem.Soc., 2015,137:14275-14280. doi: 10.1021/jacs.5b06110

    5. [5]

      Ling L.L., Schneider T., Peoples A.J.. A new antibiotic kills pathogens without detectable resistance[J]. Nature, 2015,517:455-459. doi: 10.1038/nature14098

    6. [6]

      Yuan H.X., Wang B., Lv F.T., Liu L.B., Wang S.. Conjugated-polymer-based energy-transfer systems for antimicrobial and anticancer applications[J]. Adv. Mater., 2014,26:6978-6982. doi: 10.1002/adma.v26.40

    7. [7]

      Bai H.T., Yuan H.X., Nie C.Y.. A supramolecular antibiotic switch for antibacterial regulation[J]. Angew.Chem.Int.Ed.Engl., 2015,54:13208-13213. doi: 10.1002/anie.201504566

    8. [8]

      Li L., Ma H.L., Qi G.B.. Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection[J]. Adv.Mater., 2016,28:254-262. doi: 10.1002/adma.201503437

    9. [9]

      Li L.L., Xu J.H., Qi G.B.. Core-shell supramolecular gelatin nanoparticles for adaptive and on-demand antibiotic delivery[J]. ACS Nano, 2014,8:4975-4983. doi: 10.1021/nn501040h

    10. [10]

      Bahar A.A., Ren D.C.. Antimicrobial peptides[J]. Pharmaceuticals, 2013,6:1543-1575. doi: 10.3390/ph6121543

    11. [11]

      S. Sayed, M. A. Jardine, Antimicrobial biopolymers, in: A. Tiwari, L. Uzun(Eds. ), Advanced Functional Materials, John Wiley & Sons, Inc. , Hoboken, NJ, 2015, pp. 493-533.

    12. [12]

      J. F. Marcos, P. Manzanares, Antimicrobial peptides, in: J. M. Lagarón, M. J. Ocio, A. López-Rubio(Eds. ), Antimicrobial Polymers, John Wiley & Sons, Inc. , Hoboken, NJ, 2011, pp. 195-225.

    13. [13]

      Waghu F.H., Gopi L., Barai R.S.. CAMP:collection of sequences and structures of antimicrobial peptides[J]. Nucleic Acids Res., 2014,42:D1154-D1158. doi: 10.1093/nar/gkt1157

    14. [14]

      Sun J.B., Xia Y.Q., Li D., Du Q., Liang D.H.. Relationship between peptide structure and antimicrobial activity as studied by de novo designed peptides[J]. Biochim.Biophys.Acta, 2014,1838:2985-2993. doi: 10.1016/j.bbamem.2014.08.018

    15. [15]

      Karal M.A.S., Alam J.M., Takahashi T., Levadny V., Yamazaki M.. Stretch-activated pore of the antimicrobial peptide, Magainin 2[J]. Langmuir, 2015,31:3391-3401. doi: 10.1021/la503318z

    16. [16]

      Juhaniewicz J., Szyk-Warszyńska L., Warszyński P., Sńk S.. Interaction of cecropin B with zwitterionic and negatively charged lipid bilayers immobilized at gold electrode surface[J]. Electrochim.Acta, 2016,204:206-217. doi: 10.1016/j.electacta.2016.04.080

    17. [17]

      Munyuki G., Jackson G.E., Venter G.A.. β-sheet structures and dimer models of the two major tyrocidines, antimicrobial peptides from Bacillus aneurinolyticus[J]. Biochemistry, 2013,52:7798-7806. doi: 10.1021/bi401363m

    18. [18]

      Maurice C.F., Haiser H.J., Turnbaugh P.J.. Xenobiotics shape the physiology and gene expression of the active human gut microbiome[J]. Cell, 2013,152:39-50. doi: 10.1016/j.cell.2012.10.052

    19. [19]

      Neale C., Hsu J.C.Y., Yip C.M., Pomès R.. Indolicidin binding induces thinning of a lipid bilayer[J]. Biophys.J., 2014,106:L29-L31. doi: 10.1016/j.bpj.2014.02.031

    20. [20]

      Rosa R.D., Santini A., Fievet J.. Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas[J]. PLoS One, 2011,6e25594. doi: 10.1371/journal.pone.0025594

    21. [21]

      Dias R.D.O., Franco O.L.. Cysteine-stabilized αβ defensins:from a common fold to antibacterial activity[J]. Peptides, 2015,72:64-72. doi: 10.1016/j.peptides.2015.04.017

    22. [22]

      Xia L.J., Wu Y.L., Kang S.. CecropinXJ, a silkworm antimicrobial peptide, induces cytoskeleton disruption in esophageal carcinoma cells[J]. Acta Biochim. Biophys.Sin., 2014,46:867-876. doi: 10.1093/abbs/gmu070

    23. [23]

      Loeffler J.M., Nelson D., Fischetti V.A.. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase[J]. Science, 2001,294:2170-2172. doi: 10.1126/science.1066869

    24. [24]

      Marcos J.F., Gandía M.. Antimicrobial peptides:to membranes and beyond[J]. Expert Opin.Drug Discov., 2009,4:659-671. doi: 10.1517/17460440902992888

    25. [25]

      Wang G.S., Li X., Wang Z.. APD3:the antimicrobial peptide database as a tool for research and education[J]. Nucleic Acids Res., 2016,44:D1087-D1093. doi: 10.1093/nar/gkv1278

    26. [26]

      Zasloff M.. Antimicrobial peptides of multicellular organisms[J]. Nature, 2002,415:389-395. doi: 10.1038/415389a

    27. [27]

      Xu X.Q., Lai R.. The chemistry and biological activities of peptides from amphibian skin secretions[J]. Chem.Rev., 2015,115:1760-1846. doi: 10.1021/cr4006704

    28. [28]

      J. M. Conlon, A. Sonnevend, Antimicrobial peptides in frog skin secretions, in: A. Giuliani, A. C. Rinaldi(Eds. ), Antimicrobial Peptides, Humana Press, Totowa, NJ, 2010, pp. 3-14.

    29. [29]

      Peters B.M., Shirtliff M.E., Jabra-Rizk M.A.. Antimicrobial peptides:primeval molecules or future drugs[J]. PLoS Pathog., 2010,6e1001067. doi: 10.1371/journal.ppat.1001067

    30. [30]

      Liu S.L., Du X.B., Kong J.L., Jiang H.. A novel plant defensin from Chinese mistletoe, Viscum coloratum(Kom.)Nakai[J]. Chin.Chem.Lett., 2007,18:55-58. doi: 10.1016/j.cclet.2006.11.007

    31. [31]

      Zhao R.L., Han J.Y., Han W.Y.. Molecular cloning of two novel temporins from lithobates catesbeianus and studying of their antimicrobial mechanisms[J]. Prog.Biochem.Biophys., 2009,36:1064-1070. doi: 10.3724/SP.J.1206.2009.00033

    32. [32]

      Anaya-López J.L., López-Meza J.E., Ochoa-Zarzosa A.. Bacterial resistance to cationic antimicrobial peptides[J]. Crit.Rev.Microbiol., 2013,39:180-195. doi: 10.3109/1040841X.2012.699025

    33. [33]

      Ortega M.A., Hao Y., Zhang Q.. Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB[J]. Nature, 2014,517:509-512. doi: 10.1038/nature13888

    34. [34]

      de Oliveira Junior A.A., Silva de Araújo Couto H.G., Barbosa A.A.T., Carnelossi M.A.G., de Moura T.R.. Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruit juices[J]. Int.J.Food Microbiol., 2015,211:38-43. doi: 10.1016/j.ijfoodmicro.2015.06.029

    35. [35]

      Li J., Neubauer P.. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides[J]. N.Biotechnol., 2014,31:579-585. doi: 10.1016/j.nbt.2014.03.006

    36. [36]

      Strieker M., Tanović A., Marahiel M.A.. Nonribosomal peptide synthetases: structures and dynamics[J]. Curr.Opin.Struct.Biol., 2010,20:234-240. doi: 10.1016/j.sbi.2010.01.009

    37. [37]

      Lande R., Botti E., Jandus C.. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis[J]. Nat.Commun., 2014,55621. doi: 10.1038/ncomms6621

    38. [38]

      Marcos J.F., Muñoz A., Pérez-Payá E., Misra S., López-García B.. Identification and rational design of novel antimicrobial peptides for plant protection[J]. Annu. Rev.Phytopathol., 2008,46:273-301. doi: 10.1146/annurev.phyto.121307.094843

    39. [39]

      Desai P.N., Shrivastava N., Padh H.. Production of heterologous proteins in plants:strategies for optimal expression[J]. Biotechnol.Adv., 2010,28:427-435. doi: 10.1016/j.biotechadv.2010.01.005

    40. [40]

      S. Albayrak, J. M. Rouillard, E. Gulari, Cloning and expression of antimicrobial peptides in yeast, Proceedings of AIChE100-2008 AIChE Annual Meeting, AIChE, Philadelphia, PA, 2008.

    41. [41]

      Bommarius B., Jenssen H., Elliott M.. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli[J]. Peptides, 2010,31:1957-1965. doi: 10.1016/j.peptides.2010.08.008

    42. [42]

      Yun M.F., Hui L., Li H.Z.. Expression of tandem repeat Cecropin B in Chlamydomonas reinhardtii and its antibacterial effect[J]. Prog.Biochem. Biophys., 2012,39:344-351. doi: 10.3724/SP.J.1206.2010.00671

    43. [43]

      Ishida H., Nguyen L.T., Gopal R., Aizawa T., Vogel H.J.. Overexpression of antimicrobial, anticancer, and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system[J]. J.Am.Chem.Soc., 2016,138:11318-11326. doi: 10.1021/jacs.6b06781

    44. [44]

      Wade J.D., Lin F., Hossain M.A., Dawson R.M.. Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal growth inhibitor[J]. Amino Acids, 2012,43:2279-2283. doi: 10.1007/s00726-012-1305-z

    45. [45]

      Ramos R., Moreira S., Rodrigues A., Gama M., Domingues L.. Recombinant expression and purification of the antimicrobial peptide magainin-2[J]. Biotechnol.Prog., 2013,29:17-22. doi: 10.1002/btpr.1650

    46. [46]

      Oman T.J., Boettcher J.M., Wang H., Okalibe X.N., van der Donk W.A.. Sublancin is not a lantibiotic but an S-linked glycopeptide[J]. Nat.Chem.Biol., 2011,7:78-80. doi: 10.1038/nchembio.509

    47. [47]

      Rifflet A., Gavalda S., Téné N.. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum[J]. Peptides, 2012,38:363-370. doi: 10.1016/j.peptides.2012.08.018

    48. [48]

      Costa F., Carvalho I.F., Montelaro R.C., Gomes P., Martins M.C.L.. Covalent immobilization of antimicrobial peptides(AMPs)onto biomaterial surfaces[J]. Acta Biomater., 2011,7:1431-1440. doi: 10.1016/j.actbio.2010.11.005

    49. [49]

      Scott R.W., DeGrado W.F., Tew G.N.. De novo designed synthetic mimics of antimicrobial peptides[J]. Curr.Opin.Biotechnol., 2008,19:620-627. doi: 10.1016/j.copbio.2008.10.013

    50. [50]

      Gupta M., Chauhan V.S.. De novo design of α, β-didehydrophenylalanine containing peptides:from models to applications[J]. Biopolymers, 2011,95:161-173. doi: 10.1002/bip.v95.3

    51. [51]

      Fox J.L.. Antimicrobial peptides stage a comeback[J]. Nat.Biotechnol., 2013,31379. doi: 10.1038/nbt.2572

    52. [52]

      Qi X.B., Poernomo G., Wang K.. Covalent immobilization of nisin on multi-walled carbon nanotubes:superior antimicrobial and anti-biofilm properties[J]. Nanoscale, 2011,3:1874-1880. doi: 10.1039/c1nr10024f

    53. [53]

      Sahariah P., Sørensen K.K., Hjálmarsdóttir M.á.. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers[J]. Chem.Commun., 2015,51:11611-11614. doi: 10.1039/C5CC04010H

    54. [54]

      Zhou C.C., Wang M.Z., Zou K.D.. Antibacterial polypeptide-grafted chitosan-based nanocapsules as an armed carrier of anticancer and antiepileptic drugs[J]. ACS Macro Lett., 2013,2:1021-1025. doi: 10.1021/mz400480z

    55. [55]

      Tan M.L., Choong P.F.M., Dass C.R.. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery[J]. Peptides, 2010,31:184-193. doi: 10.1016/j.peptides.2009.10.002

    56. [56]

      Brogden K.A., Ackermann M., Huttner K.M.. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial[J]. Antimicrob. Agents Chemother., 1997,41:1615-1617.  

    57. [57]

      Steffen H., Rieg S., Wiedemann I.. Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge[J]. Antimicrob.Agents Chemother., 2006,50:2608-2620. doi: 10.1128/AAC.00181-06

    58. [58]

      Dennison S.R., Mura M., Harris F.. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5[J]. Biochim.Biophys.Acta, 2015,1848:1111-1118. doi: 10.1016/j.bbamem.2015.01.014

    59. [59]

      Chan D.I., Prenner E.J., Vogel H.J.. Tryptophan-and arginine-rich antimicrobial peptides:structures and mechanisms of action[J]. Biochim.Biophys.Acta, 2006,1758:1184-1202. doi: 10.1016/j.bbamem.2006.04.006

    60. [60]

      Pieta P., Majewska M., Su Z.F.. Physicochemical studies on orientation and conformation of a new bacteriocin BacSp222 in a planar phospholipid bilayer[J]. Langmuir, 2016,32:5653-5662. doi: 10.1021/acs.langmuir.5b04741

    61. [61]

      Bechinger B., Lohner K.. Detergent-like actions of linear amphipathic cationic antimicrobial peptides[J]. Biochim.Biophys.Acta, 2006,1758:1529-1539. doi: 10.1016/j.bbamem.2006.07.001

    62. [62]

      Wimley W.C.. Describing the mechanism of antimicrobial peptide action with the interfacial activity model[J]. ACS Chem.Biol., 2010,5:905-917. doi: 10.1021/cb1001558

    63. [63]

      Park S.C., Kim J.Y., Shin S.O.. Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy[J]. Biochem. Biophys.Res.Commun., 2006,343:222-228. doi: 10.1016/j.bbrc.2006.02.090

    64. [64]

      Sengupta D., Leontiadou H., Mark A.E., Marrink S.J.. Toroidal pores formed by antimicrobial peptides show significant disorder[J]. Biochim.Biophys.Acta, 2008,1778:2308-2317. doi: 10.1016/j.bbamem.2008.06.007

    65. [65]

      Lee M.O., Jang H.J., Han J.Y., Womack J.E.. Chicken NK-lysin is an alpha-helical cationic peptide that exerts its antibacterial activity through damage of bacterial cell membranes[J]. Poult.Sci., 2014,93:864-870. doi: 10.3382/ps.2013-03670

    66. [66]

      Pokorny A., Almeida P.F.F.. Permeabilization of raft-containing lipid vesicles by δ-lysin:a mechanism for cell sensitivity to cytotoxic peptides[J]. Biochemistry, 2005,44:9538-9544. doi: 10.1021/bi0506371

    67. [67]

      Zhang Y.M., Rock C.O.. Transcriptional regulation in bacterial membrane lipid synthesis[J]. J.Lipid Res., 2009,50:S115-S119.  

    68. [68]

      Madeo F., Herker E., Wissing S.. Apoptosis in yeast[J]. Curr.Opin.Microbiol., 2004,7:655-660. doi: 10.1016/j.mib.2004.10.012

    69. [69]

      Vriens K., Cools T.L., Harvey P.J.. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms[J]. Peptides, 2016,75:71-79. doi: 10.1016/j.peptides.2015.11.001

    70. [70]

      Narasimhan M.L., Damsz B., Coca M.A.. A plant defense response effector induces microbial apoptosis[J]. Mol.Cell, 2001,8:921-930. doi: 10.1016/S1097-2765(01)00365-3

    71. [71]

      Puri S., Edgerton M.. How does it kill? Understanding the candidacidal mechanism of salivary histatin 5[J]. Eukaryot.Cell, 2014,13:958-964. doi: 10.1128/EC.00095-14

    72. [72]

      Borgwardt D.S., Martin A.D., Van Hemert J.R.. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B(HagB)and alters HagB-induced chemokine responses[J]. Sci.Rep., 2014,43904.  

    73. [73]

      Orrapin S., Intorasoot S.. Recombinant expression of novel protegrin-1 dimer and LL-37-linker-histatin-5 hybrid peptide mediated biotin carboxyl carrier protein fusion partner[J]. Protein Expr.Purif., 2014,93:46-53. doi: 10.1016/j.pep.2013.10.010

    74. [74]

      Shah P., Shih-Hsiao F., Ho Y.H., Chen C.S.. The proteome targets of intracellular targeting antimicrobial peptides[J]. Proteomics, 2016,16:1225-1237. doi: 10.1002/pmic.v16.8

    75. [75]

      Jang J.H., Kim Y.J., Kim H., Kim S.C., Cho J.H.. Buforin Ⅱb induces endoplasmic reticulum stress-mediated apoptosis in HeLa cells[J]. Peptides, 2015,69:144-149. doi: 10.1016/j.peptides.2015.04.024

    76. [76]

      Muñoz A., Marcos J.F., Read N.D.. Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26[J]. Mol.Microbiol., 2012,85:89-106. doi: 10.1111/j.1365-2958.2012.08091.x

    77. [77]

      Copolovici D.M., Langel K., Eriste E., Langel Ü.. Cell-penetrating peptides: design, synthesis, and applications[J]. ACS Nano, 2014,8:1972-1994. doi: 10.1021/nn4057269

    78. [78]

      N. Sitaram, Structure-function Correlations in Antibacterial and Cytolytic Peptides: Studies on Seminalplasmin: Seminalplasmin-derived and Related Synthetic Peptides, Jawaharlal Nehru University, Delhi, 2014.

    79. [79]

      Giuliani A., Pirri G., Nicoletto S.. Antimicrobial peptides:an overview of a promising class of therapeutics[J]. Open Life Sci., 2007,2:1-33. doi: 10.2478/s11535-007-0010-5

    80. [80]

      Kang S.J., Park S.J., Mishig-Ochir T., Lee B.J.. Antimicrobial peptides:therapeutic potentials[J]. Expert Rev.Anti Infect.Ther., 2014,12:1477-1486. doi: 10.1586/14787210.2014.976613

    81. [81]

      Zhu X., Dong N., Wang Z.Y.. Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity[J]. Acta Biomater., 2014,10:244-257. doi: 10.1016/j.actbio.2013.08.043

    82. [82]

      Ding Y.L., Wang W., Fan M.. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms[J]. Peptides, 2014,52:61-67. doi: 10.1016/j.peptides.2013.11.020

    83. [83]

      Bagheri M., Beyermann M., Dathe M.. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum[J]. Antimicrob.Agents Chemother., 2009,53:1132-1141. doi: 10.1128/AAC.01254-08

  • 加载中
    1. [1]

      Xu LuoJinwen XiaoQiming YangXiaolong LuQianjun HuangXiaojun AiBo LiLi SunLong Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684

    2. [2]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    3. [3]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    4. [4]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    5. [5]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    6. [6]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    7. [7]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    8. [8]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    9. [9]

      Hao SunShengke LiQian LiuMinzan ZuoXueqi TianKaiya WangXiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999

    10. [10]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

    11. [11]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    12. [12]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    13. [13]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    14. [14]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    15. [15]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    16. [16]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    17. [17]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    18. [18]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    19. [19]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    20. [20]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

Metrics
  • PDF Downloads(0)
  • Abstract views(733)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return