Citation: Dai Hong-Liang, Geng Yan-Fang, Zeng Qing-Dao, Wang Chen. Photo-regulation of 2D supramolecular self-assembly: On-surface photochemistry studied by STM[J]. Chinese Chemical Letters, ;2017, 28(4): 729-737. doi: 10.1016/j.cclet.2016.09.018 shu

Photo-regulation of 2D supramolecular self-assembly: On-surface photochemistry studied by STM

  • Corresponding author: Zeng Qing-Dao, zengqd@nanoctr.cn Wang Chen, wangch@nanoctr.cn
  • Received Date: 25 July 2016
    Revised Date: 22 August 2016
    Accepted Date: 29 August 2016
    Available Online: 5 April 2016

Figures(15)

  • During the past few years, regulation and controlling of the two-dimension(2D)self-assembled supramolecular structure on surface have drawn increasing attention in nanoscience and technology. External stimuli have been widely used to regulate these 2D nanostructures.Among various external stimuli approaches, photo-regulation as one of the most outstanding means of regulation has been extensively studied because different wave bands can lead to molecular conformation variation and new bonds to gain new molecules.In this review, the photo-regulated self-assembled structure on solid surface as well as the photo-reactions of different molecules substituted with photo-sensitive groups are introduced to give us an insight into on-surface photochemistry, which plays an important role on the nano-devices fabrication.Notably, these photo-sensitive behaviors as well as the formed structures on surface were probed at sub-molecule level by unique scanning tunneling microscopy(STM)technique.
  • 加载中
    1. [1]

      Wang D., Chen Q., Wan L.J.. Structural transition of molecular assembly under photo-irradiation:an STM study[J]. Phys.Chem.Chem.Phys., 2008,10:6467-6478. doi: 10.1039/b810304f

    2. [2]

      Henzl J., Bredow T.. Morgenstern K.Irreversible isomerization of the azobenzene derivate methyl orange on Au(111)[J]. Chem.Phys.Lett., 2007,435:278-282. doi: 10.1016/j.cplett.2006.12.096

    3. [3]

      Martin M., Lastapis M., Riedel D.. Mastering the molecular dynamics of a bistable molecule by single atom manipulation[J]. Phys.Rev.Lett., 2006,97216103. doi: 10.1103/PhysRevLett.97.216103

    4. [4]

      Henzl J., Mehlhorn M., Gawronski H., Rieder K.H., Morgenstern K.. Reversible cis-trans isomerization of a single azobenzene molecule[J]. Angew.Chem.Int.Ed., 2006,45:603-606. doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Spillmann H., Kiebele A., Stöhr M.. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes[J]. Adv.Mater., 2006,18:275-279. doi: 10.1002/(ISSN)1521-4095

    6. [6]

      Griessl S., Lackinger M., Edelwirth M., Hietschold M., Heckl W.M.. Self-assembled two-dimensional molecular host-guest architectures from trimesic acid[J]. Single Mol., 2002,3:25-31. doi: 10.1002/(ISSN)1438-5171

    7. [7]

      Theobald J.A., Oxtoby N.S., Phillips M.A., Champness N.R., Beton P.H.. Controlling molecular deposition and layer structure with supramolecular surface assemblies[J]. Nature, 2003,424:1029-1031. doi: 10.1038/nature01915

    8. [8]

      Stepanow S., Lin N., Payer D.. Surface-assisted assembly of 2D metal-organic networks that exhibit unusual threefold coordination symmetry[J]. Angew.Chem., 2007,119:724-727. doi: 10.1002/(ISSN)1521-3757

    9. [9]

      Lingenfelder M.A., Spillmann H., Dmitriev A.. Towards surface-supported supramolecular architectures:tailored coordination assembly of 1, 4-benzenedicarboxylate and Fe on Cu(10 0)[J]. Chem.Eur.J., 2004,10:1913-1919. doi: 10.1002/(ISSN)1521-3765

    10. [10]

      Lei S.B., Tahara K., Feng X.L.. Molecular clusters in two-dimensional surface-confined nanoporous molecular networks:structure, rigidity, and dynamics[J]. J.Am.Chem.Soc., 2008,130:7119-7129. doi: 10.1021/ja800801e

    11. [11]

      Qiu X.H., Wang C., Zeng Q.D.. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins[J]. J.Am.Chem.Soc., 2000,122:5550-5556. doi: 10.1021/ja994271p

    12. [12]

      Ulman A.. Formation and structure of self-assembled monolayers[J]. Chem.Rev., 1996,96:1533-1554. doi: 10.1021/cr9502357

    13. [13]

      Li Y.B., Liu C.H., Xie Y.Z.. Temperature-controlled self-assembling structure with selective guest-recognition at the liquid-solid interface[J]. Phys. Chem.Chem.Phys., 2013,15:125-128. doi: 10.1039/C2CP43244G

    14. [14]

      Hu F.Y., Gong Y.N., Zhang X.M.. Temperature-induced transitions of self-assembled phthalocyanine molecular nanoarrays at the solid-liquid interface: from randomness to order[J]. Nanoscale, 2014,6:4243-4249. doi: 10.1039/c3nr06320h

    15. [15]

      Okawa Y., Aono M.. Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions[J]. J.Chem.Phys., 2001,115:2317-2322. doi: 10.1063/1.1384554

    16. [16]

      Li Y.B., Wan J.H., Deng K.. Transformation of self-assembled structure by the addition of active reactant[J]. J.Phys.Chem.C, 2011,115:6540-6544. doi: 10.1021/jp1097876

    17. [17]

      Mandal S.K., Okawa Y., Hasegawa T., Aono M.. Rate-determining factors in the chain polymerization of molecules initiated by local single-molecule excitation[J]. ACS Nano, 2011,5:2779-2786. doi: 10.1021/nn103231j

    18. [18]

      Katsonis N., Lubomska M., Pollard M.M., Feringa B.L., Rudolf P.. Synthetic light-activated molecular switches and motors on surfaces[J]. Prog.Surf.Sci., 2007,82:407-434. doi: 10.1016/j.progsurf.2007.03.011

    19. [19]

      Binnig G., Rohrer H., Gerber C., Weibel E.. Surface studies by scanning tunneling microscopy[J]. Phys.Rev.Lett., 1982,49:57-61. doi: 10.1103/PhysRevLett.49.57

    20. [20]

      Magonov S.N., Whangbo M.H.. Interpreting STM and AFM images[J]. Adv.Mater., 1994,6:355-371. doi: 10.1002/(ISSN)1521-4095

    21. [21]

      De Feyter S., Gesquière A., Abdel-Mottaleb M.M.. Scanning tunneling microscopy:a unique tool in the study of chirality, dynamics, and reactivity in physisorbed organic monolayers[J]. Acc.Chem.Res., 2000,33:520-531. doi: 10.1021/ar970040g

    22. [22]

      De Feyter S., De Schryver F.C.. Self-assembly at the liquid/solid interface:STM reveals[J]. J.Phys.Chem.B, 2005,109:4290-4302. doi: 10.1021/jp045298k

    23. [23]

      Zhang X.M., Zeng Q.D., Wang C.. Molecular templates and nano-reactors:two-dimensional hydrogen bonded supramolecular networks on solid/liquid interfaces[J]. RSC Adv., 2013,3:11351-11366. doi: 10.1039/c3ra40473k

    24. [24]

      Lu J., Lei S.B., Zeng Q.D.. Template-induced inclusion structures with copper(Ⅱ)phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks[J]. J.Phys.Chem.B, 2004,108:5161-5165.  

    25. [25]

      Shen Y.T., Guan L., Zhang X.M.. Site-selective effects on guest-molecular adsorption and fabrication of four-component architecture by higher order networks[J]. Phys.Chem.Chem.Phys., 2013,15:12475-12479. doi: 10.1039/c3cp50371b

    26. [26]

      Shen Y.T., Deng K., Zeng Q.D., Wang C.. Size-selective effects on fullerene adsorption by nanoporous molecular networks[J]. Small, 2010,6:76-80. doi: 10.1002/smll.v6:1

    27. [27]

      Shen Y.T., Deng K., Zhang X.M.. Selective and competitive adsorptions of guest molecules in phase-separated networks[J]. J.Phys.Chem.C, 2011,115:19696-19701. doi: 10.1021/jp202890y

    28. [28]

      Li M., Deng K., Lei S.B.. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface[J]. Angew.Chem.Int.Ed., 2008,47:6717-6721. doi: 10.1002/anie.v47:35

    29. [29]

      Li Y.B., Ma Z., Qi G.C.. Solvent effects on supramolecular networks formed by racemic star-shaped oligofluorene studied by scanning tunneling microscopy[J]. J.Phys.Chem.C, 2008,112:8649-8653.  

    30. [30]

      Wang Y.B., Niu L., Li Y.B.. Single molecule studies of cyclic peptides using molecular matrix at liquid/solid interface by scanning tunneling microscopy[J]. Langmuir, 2010,26:16305-16311. doi: 10.1021/la101467s

    31. [31]

      Shen Y.T., Zeng L.J., Lei D.. Competitive adsorption and dynamics of guest molecules in 2D molecular sieves[J]. J.Mater.Chem., 2011,21:8787-8791. doi: 10.1039/c1jm10260e

    32. [32]

      Barrett C.J., Mamiya J.I., Yager K.G., Ikeda T.. Photo-mechanical effects in azobenzene-containing soft materials[J]. Soft Matter, 2007,3:1249-1261. doi: 10.1039/b705619b

    33. [33]

      Yesodha S.K., Sadashiva Pillai C.K.. Tsutsumi N.Stable polymeric materials for nonlinear optics:a review based on azobenzene systems[J]. Prog.Polym.Sci., 2004,29:45-74. doi: 10.1016/j.progpolymsci.2003.07.002

    34. [34]

      Yager K.G., Barrett C.J.. Novel photo-switching using azobenzene functional materials[J]. J.Photochem.Photobiol.A, 2006,182:250-261. doi: 10.1016/j.jphotochem.2006.04.021

    35. [35]

      Oosaki S., Hayasaki H., Sakurai Y., Yajima S., Kimura K.. Photocontrol of ion-sensor performances in neutral-carrier-type ion sensors based on liquid-crystalline membranes[J]. Chem.Commun., 2005,522:6-522 7.  

    36. [36]

      Dietrich P., Michalik F., Schmidt R.. An anchoring strategy for photoswitchable biosensor technology:azobenzene-modified SAMs on Si (111)[J]. Appl.Phys.A, 2008,93:285-292. doi: 10.1007/s00339-008-4828-0

    37. [37]

      Pijper D., Jongejan M.G.M., Meetsma A., Feringa B.L.. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch[J]. J.Am.Chem.Soc., 2008,130:4541-4552. doi: 10.1021/ja711283c

    38. [38]

      Westmark P.R., Kelly J.P., Smith B.D.. Photoregulation of enzyme activity. Photochromic, transition-state-analog inhibitors of cysteine and serine proteases[J]. J.Am.Chem.Soc., 1993,115:3416-3419. doi: 10.1021/ja00062a003

    39. [39]

      Gorostiza P., Isacoff E.Y.. Optical switches for remote and noninvasive control of cell signaling[J]. Science, 2008,322:395-399. doi: 10.1126/science.1166022

    40. [40]

      Bazarnik M., Jurczyszyn L., Czajka R., Morgenstern K.. Mechanism of a molecular photo-switch adsorbed on Si(10 0)[J]. Phys.Chem.Chem.Phys., 2015,17:5366-5371. doi: 10.1039/C4CP04353G

    41. [41]

      Alemani M., Selvanathan S., Ample F.. Adsorption and switching properties of azobenzene derivatives on different noble metal surfaces:Au (111), Cu(111), and Au(1 0 0)[J]. J.Phys.Chem.C, 2008,112:10509-10514.  

    42. [42]

      Mielke J., Selvanathan S., Peters M.. Molecules with multiple switching units on a Au(111) surface:self-organization and single-molecule manipulation[J]. J.Phys.:Condens.Matter, 2012,24394013. doi: 10.1088/0953-8984/24/39/394013

    43. [43]

      Shen Y.T., Guan L., Zhu X.Y., Zeng Q.D., Wang C.. Submolecular observation of photosensitive macrocycles and their isomerization effects on host-guest network[J]. J.Am.Chem.Soc., 2009,131:6174-6180. doi: 10.1021/ja808434n

    44. [44]

      Shen Y.T., Deng K., Zhang X.M.. Switchable ternary nanoporous supramolecular network on photo-regulation[J]. Nano Lett., 2011,11:3245-3250. doi: 10.1021/nl201504x

    45. [45]

      Zhang X.M., Wang S., Shen Y.T.. Two-dimensional networks of an azobenzene derivative:bi-pyridine mediation and photo regulation[J]. Nanoscale, 2012,4:5039-5042. doi: 10.1039/c2nr31186k

    46. [46]

      Kumar A.S., Ye T., Takami T.. Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments[J]. Nano Lett., 2008,8:1644-1648. doi: 10.1021/nl080323+

    47. [47]

      Tsai C.S., Wang J.K., Skodje R.T., Lin J.C.. A single molecule view of bistilbene photoisomerization on a surface using scanning tunneling microscopy[J]. J.Am. Chem.Soc., 2005,127:10788-10789. doi: 10.1021/ja052448b

    48. [48]

      Shimizu H., Cojal González J.D., Hasegawa M.. Synthesis, structures, and photophysical properties of '-expanded oligothiophene 8-mers and their saturn-like C60 complexes[J]. J.Am.Chem.Soc., 2015,137:3877-3885. doi: 10.1021/jacs.5b00291

    49. [49]

      Schmidt G.M.J.. Photodimerization in the solid state[J]. Pure Appl.Chem., 1971,27:647-678.  

    50. [50]

      Xue J.D., Xu J., Hu F.Y.. Highly efficient photodimerization of olefins in a nanotemplate on HOPG by scanning tunneling microscopy[J]. Phys.Chem.Chem. Phys., 2014,16:25765-25769. doi: 10.1039/C4CP04154B

    51. [51]

      Liao L.Y., Li Y.B., Zhang X.M.. STM investigation of the photoisomerization and photodimerization of stilbene derivatives on HOPG surface[J]. J.Phys.Chem. C, 2014,118:15963-15969. doi: 10.1021/jp505511e

    52. [52]

      Xu L.P., Yan C.J., Wan L.J., Jiang S.G., Liu M.H.. Light-induced structural transformation in self-assembled monolayer of 4-(amyloxy)cinnamic acid investigated with scanning tunneling microscopy[J]. J.Phys.Chem.B, 2005,109:14773-14778. doi: 10.1021/jp052959k

    53. [53]

      Tour J.M., Molecular electronics.. Synthesis and testing of components[J]. Acc. Chem.Res., 2000,33:791-804. doi: 10.1021/ar0000612

    54. [54]

      Okawa Y., Mandal S.K., Hu C.P.. Chemical wiring and soldering toward all-molecule electronic circuitry[J]. J.Am.Chem.Soc., 2011,133:8227-8233. doi: 10.1021/ja111673x

    55. [55]

      Qiao Y.H., Zeng Q.D., Tan Z.Y.. Photoinduced organic nanowires from self-assembled monolayers[J]. J.Vac.Sci.Technol.B, 2002,20:2466-2469. doi: 10.1116/1.1526601

    56. [56]

      Deshpande A., Sham C.H., Alaboson J.M.P.. Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene[J]. J.Am.Chem.Soc., 2012,134:16759-16764. doi: 10.1021/ja307061e

    57. [57]

      Zhang X.M., Xu S.D., Li M.. Photo-induced polymerization and isomerization on the surface observed by scanning tunneling microscopy[J]. J. Phys.Chem.C, 2012,116:8950-8955. doi: 10.1021/jp2115884

    58. [58]

      Xu W., Zhang C., Gersen H.. A molecular conformational change induced self-assembly:from randomness to order[J]. Chem.Commun., 2013,49:5207-5209. doi: 10.1039/c3cc40743h

    59. [59]

      Darwish N., Aragones A.C., Darwish T., Ciampi S., Díez-Pérez I.. Multi-responsive photo-and chemo-electrical single-molecule switches[J]. Nano Lett., 2014,14:7064-7070. doi: 10.1021/nl5034599

    60. [60]

      Katsonis N., Kudernac T., Walko M.. Reversible conductance switching of single diarylethenes on a gold surface[J]. Adv.Mater., 2006,18:1397-1400. doi: 10.1002/(ISSN)1521-4095

    61. [61]

      Frath D., Sakano T., Imaizumi Y.. Diarylethene self-assembled monolayers:cocrystallization and mixing-induced cooperativity highlighted by scanning tunneling microscopy at the liquid/solid interface[J]. Chem.Eur.J., 2015,21:11350-11358. doi: 10.1002/chem.201500804

    62. [62]

      Oreshkin I., Panov V.I., Vasil'ev S.I., Koroteev N.I., Magnitskii S.A.. Direct STM observation of electronic structure modification of naphthacenequinone molecules due to photoisomerization[J]. J.Exp.Theor.Phys.Lett., 1998,68:521-526. doi: 10.1134/1.567900

  • 加载中
    1. [1]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    2. [2]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    3. [3]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    4. [4]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    5. [5]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    6. [6]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    7. [7]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    8. [8]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    11. [11]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    12. [12]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    13. [13]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

    14. [14]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    15. [15]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    16. [16]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    17. [17]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    18. [18]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    19. [19]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    20. [20]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

Metrics
  • PDF Downloads(2)
  • Abstract views(692)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return