SnS2/graphene nanocomposite: A high rate anode material for lithium ion battery
- Corresponding author: Wei Wei, weiweizzuli@163.com Qu Peng, qupeng0212@163.com
Citation:
Wei Wei, Jia Fang-Fang, Wang Ke-Feng, Qu Peng. SnS2/graphene nanocomposite: A high rate anode material for lithium ion battery[J]. Chinese Chemical Letters,
;2017, 28(2): 324-328.
doi:
10.1016/j.cclet.2016.09.003
P.F. Hu, H. Wang, Y. Yang. Renewable-biomolecule-based full lithium-ion batteries[J]. Adv. Mater., 2016,28:3486-3492. doi: 10.1002/adma.201505917
H. Wang, H.B. Feng, J.H. Li. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage[J]. Small, 2014,10:2165-2181. doi: 10.1002/smll.201303711
C.X. Zhai, N. Du, H. Zhang, J.X. Yu, D.R. Yang. Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2011,3:4067-4074. doi: 10.1021/am200933m
W. Wei, Z.H. Wang, Z. Liu. Metal oxide hollow nanostructures:fabrication and Li storage performance[J]. J. Power Sources, 2013,238:376-387. doi: 10.1016/j.jpowsour.2013.03.173
D.Z. Chen, W. Wei, R.N. Wang, J.C. Zhu, L. Guo. α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture:in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries[J]. New J. Chem., 2012,36:1589-1595. doi: 10.1039/c2nj40151g
J.G. Ren, Q.H. Wu, H. Tang. Germanium-graphene composite anode for high-energy lithium batteries with long cycle life[J]. J. Mater. Chem. A, 2013,1:1821-1826. doi: 10.1039/C2TA01286C
S.Y. Liu, X. Lu, J. Xie. Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for li-ion batteries[J]. ACS Appl. Mater. Interfaces, 2013,5:1588-1595. doi: 10.1021/am302124f
T.F. Zhou, W.K. Pang, C.F. Zhang. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS[J]. ACS Nano, 2014,8:8323-8333. doi: 10.1021/nn503582c
S. Liu, X.M. Yin, L.B. Chen, Q.H. Li, T.H. Wang. Synthesis of self-assembled 3D flowerlike SnS2 nanostructures with enhanced lithium ion storage property[J]. Solid State Sci., 2010,12:712-718. doi: 10.1016/j.solidstatesciences.2010.02.033
A.K. Geim, K.S. Novoselov. The rise of graphene[J]. Nat. Mater., 2007,6:183-191. doi: 10.1038/nmat1849
K.S. Novoselov, A.K. Geim, S.V. Morozov. Electric field effect in atomically thin carbon films[J]. Science, 2004,306:666-669. doi: 10.1126/science.1102896
A.K. Geim. Graphene:status and prospects[J]. Science, 2009,324:1530-1534. doi: 10.1126/science.1158877
N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem. Mater., 1999,11:771-778. doi: 10.1021/cm981085u
J.F. Liang, W. Wei, D. Zhong. One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for li-ion batteries[J]. ACS Appl. Mater. Interfaces, 2012,4:454-459. doi: 10.1021/am201541s
M. Zhang, D.N. Lei, Z.F. Du. Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions[J]. J. Mater. Chem., 2011,21:1673-1676. doi: 10.1039/C0JM03410J
S. Stankovich, D.A. Dikin, R.D. Piner. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007,45:1558-1565. doi: 10.1016/j.carbon.2007.02.034
N. Du, X.L. Wu, C.X. Zhai, H. Zhang, D.R. Yang. Large-scale synthesis and application of SnS2-graphene nanocomposites as anode materials for lithiumion batteries with enhanced cyclic performance and reversible capacity[J]. J. Alloys Compd., 2013,580:457-464. doi: 10.1016/j.jallcom.2013.06.079
H.X. Zhong, G.Z. Yang, H.W. Song. Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays:excellent energy storage, catalysis, photoconduction, and field-emitting performances[J]. J. Phys.Chem. C, 2012,116:9319-9326. doi: 10.1021/jp301024d
Y. Wang, F.B. Su, J.Y. Lee, X.S. Zhao, Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres:synthesis and performance in reversible li-ion storage, Chem. Mater.18(2006) 1347-1353.
M. Sathish, S. Mitani, T. Tomai, I. Honma. Ultrathin SnS2 nanoparticles on graphene nanosheets:synthesis, characterization, and li-ion storage applications[J]. J. Phys. Chem. C, 2012,116:12475-12481. doi: 10.1021/jp303121n
A. Abouimrane, O.C. Compton, K. Amine, S.T. Nguyen. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries[J]. J. Phys. Chem. C, 2010,114:12800-12804. doi: 10.1021/jp103704y
G. Wang, J. Peng, L.L. Zhang. Two-dimensional SnS2@PANI nanoplates with high capacity and excellent stability for lithium-ion batteries[J]. J. Mater. Chem. A, 2015,3:3659-3666. doi: 10.1039/C4TA06384H
B. Luo, Y. Fang, B. Wang. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage[J]. Energy Environ. Sci., 2012,5:5226-5230. doi: 10.1039/C1EE02800F
S.C. Yan, K.Y. Li, Z.X. Lin. Fabrication of a reversible SnS2/RGO nanocomposite for high performance lithium storage[J]. RSC Adv., 2016,6:32414-32421. doi: 10.1039/C6RA03124B
L. Mei, C. Xu, T. Yang. Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries[J]. J. Mater. Chem. A, 2013,1:8658-8664. doi: 10.1039/c3ta11269a
D.B. Kong, H.Y. He, Q. Song. A novel SnS2@graphene nanocable network for high-performance lithium storage[J]. RSC Adv., 2014,4:23372-23376. doi: 10.1039/c4ra03052d
L.H. Tang, Y. Wang, Y.M. Li, et al., Preparation structure, and electrochemical properties of reduced graphene sheet films, Adv. Funct.Mater.19(2009)2782-2789.
Y.M. Wu, M.J. Liu, H.B. Feng, J.H. Li. Carbon coated MnO@Mn3N2 core-shell composites for high performance lithium ion battery anodes[J]. Nanoscale, 2014,6:14697-14701. doi: 10.1039/C4NR05043F
Y.M. Li, X.J. Lv, J. Lu, J.H. Li. Preparation of SnO2-nanocrystal/graphenenanosheets composites and their lithium storage ability[J]. J. Phys. Chem. C, 2010,114:21770-21774. doi: 10.1021/jp1050047
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
Yixin Lu , Minghan Qin , Shixian Zhang , Zhen Liu , Wang Sun , Zhenhua Wang , Jinshuo Qiao , Kening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143