Citation: Wang Xin-Rui, Li Yong, Tang Li-Ping, Gan Wen, Zhou Wei, Zhao Yu-Fei, Bai Dong-Sheng. Fabrication of Zn-Ti layered double hydroxide by varying cationic ratio of Ti4+ and its application as UV absorbent[J]. Chinese Chemical Letters, ;2017, 28(2): 394-399. doi: 10.1016/j.cclet.2016.09.002 shu

Fabrication of Zn-Ti layered double hydroxide by varying cationic ratio of Ti4+ and its application as UV absorbent

  • Corresponding author: Wang Xin-Rui, wangxinrui@th.btbu.edu.cn
  • Received Date: 4 July 2016
    Revised Date: 13 August 2016
    Accepted Date: 29 August 2016
    Available Online: 12 February 2016

Figures(8)

  • ZnTi-layered double hydroxides (LDHs) with varying Zn/Ti ratio have been synthesized by coprecipitation of zinc and titanium salts from homogeneous solution. The obtained ZnTi-LDHs possess high crystallinity and hierarchical structure with improved UV-absorbance property. The UV-vis spectra show that the UV absorbing properties of ZnTi-LDHs is stronger and broader than both MgAl-LDH and ZnAl-LDH due to the existence of Ti. Moreover, the UV absorption property increased with the content of Ti, which can be ascribed to the decrease in the band gap energy, as clearly confirmed by density functional theory calculations. When irradiated by UV rays, the property of the samples with generated free radicals (OH· and O2·-) was evaluated by means of electron spin resonance (EPR). ZnTi-LDHs generated a relatively lower active radicals in contrast with TiO2 and ZnO, which implied an increased safety used as sunscreens. Therefore, this work provides a detailed understanding of UV shielding properties of ZnTiLDHs which was unrevealed previously, and demonstrates the expansive application prospects of ZnTiLDHs in the field of sunscreens.
  • 加载中
    1. [1]

      A.L. Andrady, H. Hamid, A. Torikai. Effects of solar UV and climate change on materials[J]. Photochem. Photobiol. Sci., 2011,10:292-300. doi: 10.1039/c0pp90038a

    2. [2]

      I.A. Siddiquey, E. Ukaji, T. Furusawa, M. Sato, N. Suzuki. The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO2[J]. Mater. Chem. Phys., 2007,105:162-168. doi: 10.1016/j.matchemphys.2007.04.017

    3. [3]

      R.L. McKenzie, P.J. Aucamp, A.F. Bais, L.O. Björn, M. Llyas. Changes in biologically-active ultraviolet radiation reaching the Earth's surface[J]. Photochem. Photobiol. Sci., 2007,6:218-231. doi: 10.1039/B700017K

    4. [4]

      T.G. Smijs, S. Pavel. Titanium dioxide and zinc oxide nanoparticles in sunscreens:focus on their safety and effectiveness[J]. Nanotechnol. Sci. Appl., 2011,4:95-112.  

    5. [5]

      T. Wong, D. Orton. Sunscreen allergy and its investigation[J]. Clin. Dermatol., 2011,29:306-310. doi: 10.1016/j.clindermatol.2010.11.002

    6. [6]

      J.C. Yu, J.G. Yu, W. Ho, Z.T. Jiang, L.Z. Zhang. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem. Mater., 2002,14:3808-3816. doi: 10.1021/cm020027c

    7. [7]

      (a) P.J. Sideris, U.G. Nislsen, Z.H. Gan, C.P. Grey. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science, 2008,321: 113-117;(b) R. Gao, M.J. Zhao, Y. Guan, et al., Ordered and flexible lanthanide complex thin films showing up-conversion and color-tunable luminescence. J. Mater. Chem. C, 2014,2: 9579-9586;(c) J.B. Han, Y.B. Dou, M. Wei, D.G. Evans, X. Duan. Erasable nanoporous antireflection coatings based on the reconstruction effect of layered double hydroxides. Angew. Chem. Int. Ed., 2010,49: 2171-2174;(d) D.P. Yan, M. Wei. Photofunctional Layered Materials (Structure and Bonding), Springer International Publishing, Switzerland. 2015.

    8. [8]

      D.P. Yan, J. Lu, M. Wei. Luminescent ultrathin film of anionic styrylbiphenyl derivative-layered double hydroxide and its reversible sensing for heavy metal ions.[J]. Phys. Chem. Chem. Phys., 2012,14:8591-8598. doi: 10.1039/c2cp40350a

    9. [9]

      Q. Wang, D. O'Hare. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chem. Rev., 2012,112:4124-4155.

    10. [10]

      (a) H. Zhang, J. Zhang, R.P. Yun, et al., Nanohybrids of organo-modified layered double hydroxides and polyurethanes with enhanced mechanical, damping and UV absorption properties. RSC Adv., 2016,6: 34288;(b) G.R. Wang, S.M. Xu, C.H. Xia, et al., Fabrication of host-guest UV-blocking materials by intercalation of fluorescent anions into layered double hydroxides. RSC Adv., 2015,5: 23708-23714.

    11. [11]

      (a) R. Gao, X.D. Lei, M.X. Chen, D.P. Yan, M. Wei. Two-color polarized emission and angle-dependent luminescence based on layer-by-layer assembly of binary chromophores/layered double hydroxide thin films. New J. Chem., 2013,37: 4110-4118;(b) H.Y. Ma, R. Gao, D.P. Yan, J.W. Zhao, M. Wei. Organic-inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. J. Mater. Chem. C, 2013,1: 4128-4137;(c) Y.B. Zhao, H.Y. Lin, M.X. Chen, D.P. Yan. Niflumic anion intercalated layered double hydroxides with mechano-induced and solvent-responsive luminescence. Ind. Eng. Chem. Res., 2014,53: 3140-3147.

    12. [12]

      C.M. Li, M. Wei, D.G. Evans, X. Duan. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents[J]. Small, 2014,10:4469-4486. doi: 10.1002/smll.v10.22

    13. [13]

      L. Periolia, V. Ambrogia, B. Bertinia. Anionic clays for sunscreen agent safe use:photoprotection, photostability and prevention of their skin penetration[J]. Eur. J. Pharm. Biopharm., 2006,62:185-193. doi: 10.1016/j.ejpb.2005.08.001

    14. [14]

      W.L. Sun, Q.L. He, Y. Luo. Synthesis and properties of cinnamic acid series organic UV ray absorbents-interleaved layered double hydroxides[J]. Mater. Lett., 2007,61:1881-1884. doi: 10.1016/j.matlet.2006.07.148

    15. [15]

      W.Y. Shi, Y.J. Lin, S.T. Zhang. Study on UV-shielding mechanism of layered double hydroxide materials[J]. Phys. Chem. Chem. Phys., 2013,15:18217-18222. doi: 10.1039/c3cp52819g

    16. [16]

      O. Saber, H. Tagaya. New layered double hydroxide, Zn-Ti LDH:preparation and intercalation reactions[J]. J. Incl. Phenom. Macrocycl. Chem., 2003,45:107-115. doi: 10.1023/A:1023078728942

    17. [17]

      C.G. Silva, Y. Bouizi, V. Fornés, H. García. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water[J]. J. Am. Chem. Soc., 2009,131:13833-13839. doi: 10.1021/ja905467v

    18. [18]

      M.F. Shao, J.B. Han, M. Wei, D.G. Evans, X. Duan. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chem. Eng. J., 2011,168:519-524. doi: 10.1016/j.cej.2011.01.016

    19. [19]

      X. Duan, D.G. Evans. Layered Double Hydroxides (Structure and Bonding), Springer-Verlag, Berlin, Heidelberg. 2006.

    20. [20]

      G.R. Wang, D.M. Rao, K.T. Li, Y.J. Lin. UV blocking by Mg-Zn-Al layered double hydroxides for the protection of asphalt road surfaces[J]. Ind. Eng. Chem. Res., 2014,53:4165-4172. doi: 10.1021/ie403901n

    21. [21]

      S.M. Xu, T. Pan, Y.B. Dou. Theoretical and experimental study on MIIMIIIlayered double hydroxides as efficient photocatalysts toward oxygen evolution from water[J]. J. Phys. Chem. C, 2015,119:18823-18834. doi: 10.1021/acs.jpcc.5b01819

    22. [22]

      Y.B. Dou, S.T. Zhang, T. Pan. TiO2@layered double hydroxide core-shell nanospheres with largely enhanced photocatalytic activity toward O2 generation[J]. Adv. Funct. Mater., 2015,25:2243-2249. doi: 10.1002/adfm.201404496

    23. [23]

      Y.B. Dou, J.B. Han, T.L. Wang. Fabrication of MMO-TiO2 one-dimensional photonic crystal and its application as a colorimetric sensor[J]. J. Mater. Chem., 2012,22:14001-14007. doi: 10.1039/c2jm31560b

    24. [24]

      M.D. Segall, P.J.D. Lindan, M.J. Probert. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J. Phys.:Condens. Matter, 2002,14:2717-2744. doi: 10.1088/0953-8984/14/11/301

    25. [25]

      M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients[J]. Rev. Mod. Phys., 1992,64:1045-1097. doi: 10.1103/RevModPhys.64.1045

    26. [26]

      J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77:3865-3868. doi: 10.1103/PhysRevLett.77.3865

    27. [27]

      N.A. Deskins, M. Dupuis. Intrinsic hole migration rates in TiO2 from density functional theory[J]. J. Phys. Chem. C, 2009,113:346-358. doi: 10.1021/jp802903c

  • 加载中
    1. [1]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    2. [2]

      Wu-Yang LiuXin-Xiang LeiWen-Ji WangJun-Mian TianYu-Qi GaoJin-Ming Gao . Hyperforatone A, the 1,8-seco rearranged polycyclic polyprenylated acylphloroglucinol with a unique bicyclo[5.4.0]undecane core from Hypericum perforatum. Chinese Chemical Letters, 2025, 36(4): 110478-. doi: 10.1016/j.cclet.2024.110478

    3. [3]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    4. [4]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    5. [5]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    6. [6]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    7. [7]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    12. [12]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    13. [13]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    14. [14]

      Huijuan LiZhu WangJiagen GengRuiping SongXiaoyin LiuChaochen FuSi Li . Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chinese Chemical Letters, 2025, 36(4): 110138-. doi: 10.1016/j.cclet.2024.110138

    15. [15]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    16. [16]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    17. [17]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    20. [20]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

Metrics
  • PDF Downloads(4)
  • Abstract views(783)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return