Citation: Xu Zhi, Zhang Shu, Gao Chuan, Fan Jing, Zhao Feng, Lv Zao-Sheng, Feng Lian-Shun. Isatin hybrids and their anti-tuberculosis activity[J]. Chinese Chemical Letters, ;2017, 28(2): 159-167. doi: 10.1016/j.cclet.2016.07.032 shu

Isatin hybrids and their anti-tuberculosis activity

  • Corresponding author: Lv Zao-Sheng, lzs1961@yahoo.com.cn Feng Lian-Shun, ochemistry@163.com
  • 1These authorscontributeequally.
  • Received Date: 16 May 2016
    Revised Date: 12 July 2016
    Accepted Date: 17 July 2016
    Available Online: 9 February 2016

Figures(17)

  • Tuberculosis (TB) is one of the most common and even fatal infectious diseases known to mankind. Millions of new cases are reported every year over the world, and one-third of the world's population is potentially infected with mycobacteria tuberculosis (MTB). Research to develop novel anti-TB drugs led to the identification of several isatin-based antimycobacterial agents, among which a number of potential candidates displayed excellent antimycobacterial activity and were found to be free of cytotoxicity. This review outlines the advances in the application of isatin hybrids as antimycobacterial agents and the critical aspects of design and structure-activity relationship of these derivatives.
  • 加载中
    1. [1]

      L.S. Feng, M.L. Liu, B. Wang. Synthesis and in vitro antimycobacterial activity of balofloxacin ethylene isatin derivatives[J]. Eur. J. Med. Chem., 2010,45:3407-3412. doi: 10.1016/j.ejmech.2010.04.027

    2. [2]

      T. Aboul-Fadl, F.A.S. Bin-Jubair, O. Aboul-Wafa. Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building[J]. Eur. J. Med. Chem., 2010,45:4578-4586. doi: 10.1016/j.ejmech.2010.07.020

    3. [3]

      J. Crofton, P. Chaulet, D. Maher, Guidelines for the Management of Drugresistant Tuberculosis:WHO/TB/96-210(Rev. 1), World Health Organization, Geneva, 1997.

    4. [4]

      C. Viegas-Junior, A. Danuello, V. da Silva Bolzani, E.J. Barreiro, C.A.M. Fraga. Molecular hybridization:a useful tool in the design of new drug prototypes[J]. Curr. Med. Chem., 2007,14:1829-1852. doi: 10.2174/092986707781058805

    5. [5]

      A. González, J. Quirante, J. Nieto. Isatin derivatives, a novel class of transthyretin fibrillogenesis inhibitors[J]. Bioorg. Med. Chem. Lett., 2009,19:5270-5273. doi: 10.1016/j.bmcl.2009.03.004

    6. [6]

      T. Aboul-Fadl, F.A.H. Mohammed, E.A.S. Hassan. Synthesis, antitubercular activity and pharmacokinetic studies of some schiff bases derived from 1-alkylisatin and isonicotinic acid hydrazide (inh)[J]. Arch. Pharm. Res., 2003,26:778-784. doi: 10.1007/BF02980020

    7. [7]

      S.K. Sridhar, M. Saravanan, A. Ramesh. Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives[J]. Eur. J. Med. Chem., 2001,36:615-625. doi: 10.1016/S0223-5234(01)01255-7

    8. [8]

      E. Piscopo, M.V. Diurno, R. Gogliadi, M. Cucciniello, G. Veneruso. Studies on heterocyclic compounds:indol-2,3-dione derivatives. VII. Variously substituted hydrazones with antimicrobial activity[J]. Boll. Soc. Ital. Biol. Sper., 1987,63:827-832.

    9. [9]

      D. Sriram, T.R. Bal, P. Yogeeswari. Newer aminopyrimidinimino isatin analogues as non-nucleoside HIV-1 reverse transcriptase inhibitors for HIV and other opportunistic infections of AIDS:design, synthesis and biological evaluation[J]. Farmaco, 2005,60:377-384. doi: 10.1016/j.farmac.2005.03.005

    10. [10]

      N. Karalı, A. Gürsoy, F. Kandemirli. Synthesis and structure-antituberculosis activity relationship of 1H-indole-2,3-dione derivatives[J]. Bioorg. Med. Chem., 2007,15:5888-5904. doi: 10.1016/j.bmc.2007.05.063

    11. [11]

      D. Sriram, A. Aubry, P. Yogeeswari, L.M. Fisher. Gatifloxacin derivatives:synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase[J]. Bioorg. Med. Chem. Lett., 2006,16:2982-2985. doi: 10.1016/j.bmcl.2006.02.065

    12. [12]

      D. Sriram, P. Yogeeswari, J.S. Basha, D.R. Radha, V. Nagaraja. Synthesis and antimycobacterial evaluation of various 7-substituted ciprofloxacin derivatives[J]. Bioorg. Med. Chem., 2005,13:5774-5778. doi: 10.1016/j.bmc.2005.05.063

    13. [13]

      S.N. Pandeya, D. Sriram, P. Yogeeswari, S. Ananthan. Antituberculous activity of norfloxacin mannich bases with isatin derivatives[J]. Chemotherapy, 2001,47:266-269. doi: 10.1159/000048533

    14. [14]

      S. Talath, B.A. Bhongade. Synthesis, antimicrobial and anticancer studies of isatin derivatives of sparfloxacin[J]. Am. PharmTech Res., 2013,3:570-581.

    15. [15]

      B.Y. Zhao, R. Pine, J. Domagala, K. Drlica. Fluoroquinolone action against clinical isolates of Mycobacterium tuberculosis:effects of a C-8 methoxyl group on survival in liquid media and in human macrophages[J]. Antimicrob. Agents Chemother., 1999,43:661-666.

    16. [16]

      L.S. Feng, M.L. Liu, S. Zhang. Synthesis and in vitro antimycobacterial activity of 8-OCH3 ciprofloxacin methylene and ethylene isatin derivatives[J]. Eur. J. Med. Chem., 2011,46:341-348. doi: 10.1016/j.ejmech.2010.11.023

    17. [17]

      L.S. Feng, M.L. Liu, S. Wang. Synthesis and in vitro antimycobacterial activity of moxifloxacin methylene and ethylene isatin derivatives[J]. Chem. Res. Chin. Univ., 2012,28:61-66.

    18. [18]

      Z.L. Wan, M.L. Liu, L.S. Feng. Synthesis and in vitro antimycobacterial activity of gatifloxacin ethylene isatin derivatives[J]. Chin. J. Antibiot., 2011,36:37-43.

    19. [19]

      T.R. Bal, B. Anand, P. Yogeeswari, D. Sriram. Synthesis and evaluation of antiHIV activity of isatin β-thiosemicarbazone derivatives[J]. Bioorg. Med. Chem. Lett., 2005,15:4451-4455. doi: 10.1016/j.bmcl.2005.07.046

    20. [20]

      D. Sriram, T.R. Bal, P. Yogeeswari. Aminopyrimidinimino isatin analogues:design of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broad-spectrum[J]. J. Pharm. Pharm. Sci., 2005,8:565-577.

    21. [21]

      D. Banerjee, P. Yogeeswari, P. Bhat. Novel isatinyl thiosemicarbazones derivatives as potential molecule to combat HIV-TB co-infection[J]. Eur. J. Med. Chem., 2011,46:106-121. doi: 10.1016/j.ejmech.2010.10.020

    22. [22]

      D. Sriram, P. Yogeeswari, G. Gopal. Synthesis, anti-HIV and antitubercular activities of lamivudine prodrugs[J]. Eur. J. Med. Chem., 2005,40:1373-1376. doi: 10.1016/j.ejmech.2005.07.006

    23. [23]

      N. Joy, B. Mathew. Molecular hybridization and preclinical evaluation of imines from para-substituted 4-phenyl 2-amino thiazole incorporated with isatin analogues as antitubercular agents[J]. Anti-Infect. Agents, 2015,13:60-64. doi: 10.2174/2211352512666140905232639

    24. [24]

      R.D. Dighe, S.S. Rohom, P.D. Dighe, M.R. Shiradkar. Condensed bridgehead nitrogen heterocyclic systems:synthesis and evaluation of isatinyl thiazole derivatives as anti-Mycobacterium tuberculosis agents and dTDP-rhamnose inhibitors[J]. Der Pharma Chem., 2011,3:418-432.

    25. [25]

      V.U. Jeankumar, R. Alokam, J.P. Sridevi. Discovery and structure optimization of a series of isatin derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors[J]. Chem. Biol. Drug Des., 2014,83:498-506. doi: 10.1111/cbdd.2014.83.issue-4

    26. [26]

      T.N. Akhaja, J.P. Raval. Design, synthesis, in vitro evaluation of tetrahydropyrimidine-isatin hybrids as potential antibacterial, antifungal and anti-tubercular agents[J]. Chin. Chem. Lett., 2012,23:446-449. doi: 10.1016/j.cclet.2012.01.040

    27. [27]

      T.N. Akhaja, J.P. Raval. Design, synthesis and in vitro evaluation of tetrahydropyrimidine-isatin hybrids as potential antitubercular and antimalarial agents[J]. Chin. Chem. Lett., 2012,23:785-788. doi: 10.1016/j.cclet.2012.05.004

    28. [28]

      T.N. Akhaja, J.P. Raval, 1,3-Dihydro-2H-indol-2-ones derivatives:design, synthesis, in vitro antibacterial, antifungal and antitubercular study, Eur. J. Med. Chem. 46(2011) 5573-5579.

    29. [29]

      A. Kamal, A.A. Shaik, R. Sinha, J.S. Yadav, S.K. Arora. Antitubercular agents. Part 2:new thiolactomycin analogues active against Mycobacterium tuberculosis[J]. Bioorg. Med. Chem. Lett., 2005,15:1927-1929. doi: 10.1016/j.bmcl.2005.01.084

    30. [30]

      R.H. Hans, I.J.F. Wiid, P.D. van Helden. Novel thiolactone-isatin hybrids as potential antimalarial and antitubercular agents[J]. Bioorg. Med. Chem. Lett., 2011,21:2055-2058. doi: 10.1016/j.bmcl.2011.02.008

    31. [31]

      W.M. Eldehna, M. Fares, M.M. Abdel-Aziz, H.A. Abdel-Aziz. Design, synthesis and antitubercular activity of certain nicotinic acid hydrazides[J]. Molecules, 2015,20:8800-8815. doi: 10.3390/molecules20058800

    32. [32]

      J. Sandy, A. Mushtaq, A. Kawamura. The structure of arylamine Nacetyltransferase from Mycobacterium smegmatis-an enzyme which inactivates the anti-tubercular drug, isoniazid[J]. J. Mol. Biol., 2002,318:1071-1083. doi: 10.1016/S0022-2836(02)00141-9

    33. [33]

      M.A. Hussein, T. Aboul-Fadl, A. Hussein. Synthesis and antitubercular activity of some mannich bases derived from isatin isonicotinic acid hydrazone[J]. Bull. Pharm. Sci.:Assiut Univ., 2005,28:131-136.

    34. [34]

      K. Arul, K.S. Sunisha. In-silico design, synthesis and in vitro anticancer and antitubercular activity of novel azetidinone containing isatin derivatives[J]. Int. J. Pharm. Pharm. Sci., 2014,16:506-513.

    35. [35]

      S.K. Gupta, S.S. Pancholi. Synthesis and evaluation of antitubercular activity of some thiobenzimidazolyl derivatives[J]. Der Pharma Chem., 2011,3:274-279.

    36. [36]

      A.H. Diacon, A. Pym, M. Grobush. The diarylquinoline TMC207 for multidrug-resistant tuberculosis[J]. N. Engl. J. Med., 2009,360:2397-2405. doi: 10.1056/NEJMoa0808427

    37. [37]

      R. Raj, C. Biot, S. Carrère-Kremer, L. Kremer, et al., 7-Chloroquinoline-isatin conjugates:antimalarial, antitubercular, and cytotoxic evaluation, Chem. Biol. Drug Des. 83(2014) 622-629.

    38. [38]

      M.T. Cocco, C. Congiu, V. Onnis, M.L. Pellerano, A. De Logu. Synthesis and antimycobacterial activity of new S-alkylisothiosemicarbazone derivatives[J]. Bioorg. Med. Chem., 2002,10:501-506. doi: 10.1016/S0968-0896(01)00310-8

    39. [39]

      L.E. Bermudez, R. Reynolds, P. Kolonoski. Thiosemicarbazole (thiacetazone-like) compound with activity against Mycobacterium avium in mice[J]. Antimicrob. Agents Chemother., 2003,47:2685-2687. doi: 10.1128/AAC.47.8.2685-2687.2003

    40. [40]

      A. De Logu, M. Saddi, V. Onnis, et al., In vitro antimycobacterial activity of newly synthesised S-alkylisothiosemicarbazone derivatives and synergistic interactions in combination with rifamycins against Mycobacterium avium, Int. J. Antimicrob. Agents 26(2005) 28-32.

    41. [41]

      N. Karalı. Synthesis and primary cytotoxicity evaluation of new 5-nitroindole-2,3-dione derivatives[J]. Eur. J. Med. Chem., 2002,37:909-918. doi: 10.1016/S0223-5234(02)01416-2

    42. [42]

      N. TerzioÐlu, N. Karalı, A. Gürsoy. Synthesis and primaryantiviral activity evaluation of 3-hydrazono-5-nitro-2-indolinone derivatives[J]. ARKIVOC, 2006,1:109-118.

    43. [43]

      Ö. Güzel, N. Karalı, A. Salman. Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione-3-thiosemicarbazone derivatives[J]. Bioorg. Med. Chem., 2008,16:8976-8987. doi: 10.1016/j.bmc.2008.08.050

    44. [44]

      M. Shahlaei, A. Fassihi, A. Nezami, QSAR study of some 5-methyl/trifluoromethoxy-1H-indole-2,3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents, Res. Pharm. Sci. 4(2009) 123-131.

  • 加载中
    1. [1]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    2. [2]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    3. [3]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    4. [4]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    5. [5]

      Yu ZhangWeifeng Lin . Electrotunable interfacial friction: A brief review. Chinese Chemical Letters, 2025, 36(4): 110566-. doi: 10.1016/j.cclet.2024.110566

    6. [6]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    7. [7]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    8. [8]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    9. [9]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    10. [10]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    11. [11]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    12. [12]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    13. [13]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    14. [14]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    15. [15]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    16. [16]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    17. [17]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    18. [18]

      Yunxin LiJinghui ZhangJisen ChenFeng ZhuZhiqiang LiuPeng BaoWei ShenSheng Tang . Detection of SARS-CoV-2 based on artificial intelligence-assisted smartphone: A review. Chinese Chemical Letters, 2024, 35(7): 109220-. doi: 10.1016/j.cclet.2023.109220

    19. [19]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    20. [20]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

Metrics
  • PDF Downloads(3)
  • Abstract views(821)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return