Supported bimetallic catalyst Pt-Pb/SiO2 for selective conversion of nitrobenzene to p-aminophenol in pressurized CO2/H2O system
- Corresponding author: Jiang Jing-Yang, jyjiang@dlut.edu.cn
Citation:
Zhang Ting-Ting, Jiang Jing-Yang, Wang Yan-Hua. Supported bimetallic catalyst Pt-Pb/SiO2 for selective conversion of nitrobenzene to p-aminophenol in pressurized CO2/H2O system[J]. Chinese Chemical Letters,
;2017, 28(2): 307-311.
doi:
10.1016/j.cclet.2016.07.029
M.S. Kirk-Othmer, Encyclopedia of Chemical Technology, 4th edn., Wiley, New York, 1992.
E. Bamberger. Ueber das phenylhydroxylamin[J]. Ber. Dtsch. Chem. Ges., 1894,27:1548-1557. doi: 10.1002/(ISSN)1099-0682
D.C. Caskey, D.W. Chapman, Process for preparing p-aminophenol and alkyl substituted p-aminophenol, US 4571437.
S.F. Wang, Y.H. Ma, Y.J. Wang, W. Xue, X.Q. Zhao. Synthesis of p-aminophenol from the hydrogenation of nitrobenzene over metal-solid acid bifunctional catalyst[J]. J. Chem. Tech. Biotechnol., 2008,83:1466-1471. doi: 10.1002/jctb.v83:11
T. Komatsu, T. Hirose. Gas phase synthesis of para-aminophenol from nitrobenzene on Pt/zeolite catalysts[J]. Appl. Catal. A:Gen., 2004,276:95-102. doi: 10.1016/j.apcata.2004.07.044
S.F. Wang, B.B. He, Y.J. Wang, X.Q. Zhao. MgAPO-5-supported Pt-Pb-based novel catalyst for the hydrogenation of nitrobenzene to p-aminophenol[J]. Catal. Commun., 2012,24:109-113. doi: 10.1016/j.catcom.2012.03.024
T.T. Zhang, J.Y. Jiang, Y.H. Wang. Green route for the preparation of p-aminophenol from nitrobenzene by catalytic hydrogenation in pressurized CO2/H2O system[J]. Org. Process Res. Dev., 2015,19:2050-2054. doi: 10.1021/acs.oprd.5b00307
G. Gao, Y. Tao, J.Y. Jiang. Environmentally benign and selective reduction of nitroarenes with Fe in pressurized CO2-H2O medium[J]. Green Chem., 2008,10:439-441. doi: 10.1039/b719259b
S.J. Liu, Y.H. Wang, J.Y. Jiang, Z.L. Jin. The selective reduction of nitroarenes to Narylhydroxylamines using Zn in a CO2/H2O system[J]. Green Chem., 2009,11:1397-1400. doi: 10.1039/b906283a
C.O. Henke, J.V. Vaughen, Reduction of aryl nitro compounds, US 2198249.
L. Shi, X. Zhou, Industrial synthesis method of p-aminophenol, CN 1087623.
L.Y. Zou, Y.Y. Cui, W.L. Dai. Highly efficient Au/TiO2 catalyst for one-pot conversion of nitrobenzene to p-aminophenol in water media[J]. Chin. J. Chem., 2014,32:257-262. doi: 10.1002/cjoc.v32.3
C.V. Rode, M.J. Vaidya, R.V. Chaudhari, Single step hydrogenation of nitrobenzene to p-aminophenol, US 6403833.
Z. Dong, T. Wang, J. Zhao. Ni-silicides nanoparticles as substitute for noble metals for hydrogenation of nitrobenzene to p-aminophenol in sulfuric acid[J]. Appl. Catal. A:Gen., 2016,520:151-156. doi: 10.1016/j.apcata.2016.04.013
C.V. Rode, M.J. Vaidya, R.V. Chaudhari. Synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene[J]. Org. Process Res. Dev., 1999,3:465-470. doi: 10.1021/op990040r
S.K. Tanielyan, J.J. Nair, N. Marin. Hydrogenation of nitrobenzene to 4-aminophenol over supported platinum catalysts[J]. Org. Process Res. Dev., 2007,11:681-688. doi: 10.1021/op700049p
K.I. Min, J.S. Choi, Y.M. Chung. p-Aminophenol synthesis in an organic/aqueous system using Pt supported on mesoporous carbons[J]. Appl. Catal. A:Gen., 2008,337:97-104. doi: 10.1016/j.apcata.2007.12.004
P.L. Liu, Y.H. Hu, M. Ni, K.Y. You, H.N. Luo. Liquid phase hydrogenation of nitrobenzene to para-aminophenol over Pt/ZrO2 catalyst and SO42-/ZrO2-Al2O3 solid acid[J]. Catal. Lett., 2010,140:65-68. doi: 10.1007/s10562-010-0427-8
A. Deshpande, F. Figueras, M.L. Kantam. Environmentally friendly hydrogenation of nitrobenzene to p-aminophenol using heterogeneous catalysts[J]. J. Catal., 2010,275:250-256. doi: 10.1016/j.jcat.2010.08.005
P.N. Rylander, I.M. Karpenko, G.R. Pond, Process for preparing para-aminophenol, US 3715397.
E.L. Derrenbacker, Process for the selective preparation of p-aminophenol from nitrobenzene, US 4307249.
X.B. Shan, Y. Liu, Preparation of p-aminophenol from catalytic hydrogenation of nitrobenzene, CN 85103667.
H. Lindlar, R. Dubuis, Palladium catalyst for partial reduction of acetylenes, in:Organic Syntheses, John Wiley & Sons, Inc., New York, 2003, p. 89.
H. Lindlar. Ein neuer katalysator für selektive hydrierungen[J]. Helv. Chim. Acta, 1952,35:446-450. doi: 10.1002/hlca.19520350205
Y.S. Hwang, Y.S. Kang, B.C. Koo, et al., Method for selective hydrogenation acetylene alcohols, KR 2001082987.
T.L. Ho, S.H. Liu. Semihydrogenaticn of triple bonds in 1-alkene solutions[J]. Synth. Commun., 1987,17:969-973. doi: 10.1080/00397918708063955
J.C. Serrano-Ruiz, G.W. Huber, M.A. Sánchez-Castillo. Effect of Sn addition to Pt/CeO2-Al2O3 and Pt/Al2O3 catalysts:an XPS, 119Sn Mössbauer and microcalorimetry study[J]. J. Catal., 2006,241:378-388. doi: 10.1016/j.jcat.2006.05.005
M.Y. Yin, S.B. He, Z.K. Yu. Effect of alumina support on catalytic performance of Pt-Sn/Al2O3 catalysts in one-step synthesis of N-phenylbenzylamine from aniline and benzyl alcohol[J]. Chin. J. Catal., 2013,34:1534-1542. doi: 10.1016/S1872-2067(12)60608-1
G.D. Angel, G. Torres, V. Bertin. The role of lanthanum oxide in the formation of NO2 over Pt-Pb/Al2O3-La2O3 catalysts under lean-burn conditions[J]. Catal. Commun., 2006,7:232-235. doi: 10.1016/j.catcom.2005.10.012
S.A. Bocanegra, O.A. Scelza, S.R. de Miguel. Behavior of PtPb/MgAl2O4 catalysts with different Pb contents and trimetallic PtPbIn catalysts in n-butane dehydrogenation[J]. Appl. Catal. A:Gen., 2013,468:135-142. doi: 10.1016/j.apcata.2013.07.051
Y.Y. Huang, J.D. Cai, M.Y. Liu, Y.L. Guo. Fabrication of a novel PtPbBi/C catalyst for ethanol electro-oxidation in alkaline medium[J]. Electrochim. Acta, 2012,83:1-6. doi: 10.1016/j.electacta.2012.07.089
G.Q. Sun, Synthesis of p-Aminophenol by Catalytic Hydrogenation, Qingdao University of Science & Technology, Qingdao, 2008.
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Tianyao He , Gan Li , Xiaoqiang Xie , Dong Han , Yunyue Leng , Qiuli Zhang , Wenming Liu , Guobo Li , Hongxiang Zhang , Shan Huang , Ting Huang , Honggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421