Citation: Li Yu, Zheng Yong-Zan, Zhang Ding-Kun, Li Hai-Fang, Ma Yuan, Lin Jin-Ming. Enhanced chemiluminescence from reactions between CdTe/CdS/ZnS quantum dots and periodate[J]. Chinese Chemical Letters, ;2017, 28(2): 184-188. doi: 10.1016/j.cclet.2016.07.020 shu

Enhanced chemiluminescence from reactions between CdTe/CdS/ZnS quantum dots and periodate

  • Corresponding author: Lin Jin-Ming, jmlin@mail.tsinghua.edu.cn
  • Received Date: 30 May 2016
    Revised Date: 23 June 2016
    Accepted Date: 1 July 2016
    Available Online: 20 February 2016

Figures(6)

  • A novel chemiluminescence (CL) performance of CdTe/CdS/ZnS quantum dots (QDs) with periodate (KIO4) was studied. Effects of concentration and pH on the CL system were investigated. Electron spin resonance (ESR) and the effects of radical scavenger analysis were employed for identification of intermediate species. The CL spectra for this system showed only one maximum emission peak centered around 620 nm, which was similar with photoluminescence (PL) spectra of CdTe/CdS/ZnS QDs. The CL of CdTe/CdS/ZnS QDs was induced by direct chemical oxidation and the possible mechanism could be explained by radiative recombination of injected holes and electrons. This investigation not only provided new sight into the optical characteristics of CdTe/CdS/ZnS QDs, but also broadened their potential optical utilizations.
  • 加载中
    1. [1]

      A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996,271:933-937. doi: 10.1126/science.271.5251.933

    2. [2]

      T.M. Jovin. Quantum dots finally come of age[J]. Nat. Biotechnol., 2003,21:32-33. doi: 10.1038/nbt0103-32

    3. [3]

      J.M. Klostranec, W.C.W. Chan. Quantum dots in biological and biomedical research:recent progress and present challenges[J]. Adv. Mater., 2006,18:1953-1964. doi: 10.1002/(ISSN)1521-4095

    4. [4]

      D. Mocatta, G. Cohen, J. Schattner. Heavily doped semiconductor nanocrystal quantum dots[J]. Science, 2011,332:77-81. doi: 10.1126/science.1196321

    5. [5]

      E.A. Stinaff, M. Scheibner, A.S. Bracker. Optical signatures of coupled quantum dots[J]. Science, 2006,311:636-639. doi: 10.1126/science.1121189

    6. [6]

      H.T. Li, X.D. He, Z.H. Kang. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew. Chem. Int. Ed., 2010,49:4430-4434. doi: 10.1002/anie.200906154

    7. [7]

      X.X. Chen, Q.Q. Jin, L.Z. Wu, C. Tung, X.J. Tang. Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications[J]. Angew. Chem. Int. Ed., 2014,53:12542-12547.

    8. [8]

      J.H. Warner, A. Hoshino, K. Yamamoto, X.J. Tang. Water-soluble photoluminescent silicon quantum dots[J]. Angew. Chem. Int. Ed., 2005,44:4550-4554. doi: 10.1002/(ISSN)1521-3773

    9. [9]

      R.J. Ellingson, M.C. Beard, J.C. Johnson. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots[J]. Nano Lett., 2005,5:865-871. doi: 10.1021/nl0502672

    10. [10]

      Y. Wang, L. Zhang, R.P. Liang, J.M. Bai, J.D. Qiu. Using graphene quantum dots as photoluminescent probes for protein kinase sensing[J]. Anal. Chem., 2013,85:9148-9155. doi: 10.1021/ac401807b

    11. [11]

      V. Biju, T. Itoh, M. Ishikawa. Delivering quantum dots to cells:bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging[J]. Chem. Soc. Rev., 2010,39:3031-3056. doi: 10.1039/b926512k

    12. [12]

      X.L. Dai, Z.X. Zhang, Y.Z. Jin. Solution-processed, high-performance lightemitting diodes based on quantum dots[J]. Nature, 2014,515:96-99. doi: 10.1038/nature13829

    13. [13]

      R.J. Forster, P. Bertoncello, T.E. Keyes. Electrogenerated chemiluminescence[J]. Annu. Rev. Anal. Chem., 2009,2:359-385. doi: 10.1146/annurev-anchem-060908-155305

    14. [14]

      W. Adam, D.V. Kazakov, V.P. Kazakov. Singlet-oxygen chemiluminescence in peroxide reactions[J]. Chem. Rev., 2005,105:3371-3387. doi: 10.1021/cr0300035

    15. [15]

      C. Dodeigne, L. Thunus, R. Lejeune. Chemiluminescence as diagnostic tool. A review[J]. Talanta, 2000,51:415-439. doi: 10.1016/S0039-9140(99)00294-5

    16. [16]

      L.J. Kricka. Clinical applications of chemiluminescence[J]. Anal. Chim. Acta, 2003,500:279-286. doi: 10.1016/S0003-2670(03)00809-2

    17. [17]

      M. Iranifam. Analytical applications of chemiluminescence methods for cancer detection and therapy[J]. TrAC Trend Anal. Chem., 2014,59:156-183. doi: 10.1016/j.trac.2014.03.010

    18. [18]

      K. Tsukagoshi, N. Jinno, R. Nakajima. Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers[J]. Anal. Chem., 2005,77:1684-1688. doi: 10.1021/ac040133t

    19. [19]

      M. Mirasoli, E. Michelini. Analytical bioluminescence and chemiluminescence[J]. Anal. Bioanal. Chem., 2014,406:5529-5530. doi: 10.1007/s00216-014-7992-4

    20. [20]

      A. Roda, M. Guardigli, P. Pasini, M. Mirasoli. Bioluminescence and chemiluminescence in drug screening[J]. Anal. Bioanal. Chem., 2003,377:826-833. doi: 10.1007/s00216-003-2096-6

    21. [21]

      S.W. Qi, Q.L. Li, W. Rao. Determining the concentration of procalcitonin using a magnetic particles-based chemiluminescence assay for the clinical diagnosis of sepsis[J]. Anal. Sci., 2013,29:805-810. doi: 10.2116/analsci.29.805

    22. [22]

      A. Myint, Q.L. Zhang, L.J. Liu, H. Cui. Flow injection-chemiluminescence determination of paraben preservative in food safety[J]. Anal. Chim. Acta, 2004,517:119-124. doi: 10.1016/j.aca.2004.04.044

    23. [23]

      S.K. Poznyak, D.V. Talapin, E.V. Shevchenko, H. Weller. Quantum dot chemiluminescence[J]. Nano Lett., 2004,4:693-698. doi: 10.1021/nl049713w

    24. [24]

      H. Chen, L. Lin, H.F. Li, J.M. Lin, Quantum dots-enhanced chemiluminescence:mechanism and application, Coord. Chem. Rev. 263-264(2014) 86-100.

    25. [25]

      L.Q. Song, J.Q. Shi, J. Lu, C. Lu. Structure observation of graphene quantumdots by single-layered formation in layered confinement space[J]. Chem. Sci., 2015,6:4846-4850. doi: 10.1039/C5SC01416F

    26. [26]

      Y.S. Zhao, S.L. Zhao, J.M. Huang, F.G. Ye. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis[J]. Talanta, 2011,85:2650-2654. doi: 10.1016/j.talanta.2011.08.032

    27. [27]

      L.X. Zhao, F. Di, D.B. Wang. Chemiluminescence of carbon dots under strong alkaline solutions:a novel insight into carbon dot optical properties[J]. Nanoscale, 2013,5:2655-2658. doi: 10.1039/c3nr00358b

    28. [28]

      L.X. Zhao, F.L. Geng, F. Di. Polyamine-functionalized carbon nanodots:a novel chemiluminescence probe for selective detection of iron (III) ions[J]. RSC Adv., 2014,4:45768-45771. doi: 10.1039/C4RA08071H

    29. [29]

      Z. Lin, W. Xue, H. Chen, J.M. Lin. Classical oxidant induced chemiluminescence of fluorescent carbon dots[J]. Chem. Commun., 2011,48:1051-1053.

    30. [30]

      Y.R. Tang, Y.Y. Su, N. Yang, L.C. Zhang, Y. Lv. Carbon nitride quantum dots:a novel chemiluminescence system for selective detection of free chlorine in water[J]. Anal. Chem., 2014,86:4528-4535. doi: 10.1021/ac5005162

    31. [31]

      Z.F. Ding, B.M. Quinn, S.K. Haram. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots[J]. Science, 2002,296:1293-1297. doi: 10.1126/science.1069336

    32. [32]

      J.X. Liu, H. Chen, L. Lin, C. Lu, J.M. Lin. Sensitized chemiluminescence reaction between hydrogen peroxide and periodate of different types of Mn-doped ZnS quantum dots[J]. Chin. Sci. Bull., 2010,55:3479-3484. doi: 10.1007/s11434-010-4059-6

    33. [33]

      X.G. Dou, Z. Lin, H. Chen. Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method[J]. Chem. Commun., 2013,49:5871-5873. doi: 10.1039/c3cc41145a

    34. [34]

      J.M. Lin, M. Yamada. Oxidation reaction between periodate and polyhydroxyl compounds and its application to chemiluminescence[J]. Anal. Chem., 1999,71:1760-1766. doi: 10.1021/ac981341m

    35. [35]

      Y.Z. Zheng, X.G. Dou, H.F. Li, J.M. Lin. Bisulfite induced chemiluminescence of g-C3N4 nanosheets and enhanced by metal ions[J]. Nanoscale, 2016,8:4933-4937. doi: 10.1039/C5NR08943C

    36. [36]

      H. Chen, C. Lu, R.B. Li, G.S. Guo, J.M. Lin. Chemiluminescence behavior of sodium hydrogen carbonate in the potassium permanganate-hydrogen peroxide reaction[J]. Sci. China Chem., 2010,53:1784-1792.

    37. [37]

      Z.P. Wang, J. Li, B. Liu. Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect[J]. J. Phys. Chem. B, 2005,109:23304-23311. doi: 10.1021/jp055023k

  • 加载中
    1. [1]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    2. [2]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    5. [5]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    6. [6]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    7. [7]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    8. [8]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    9. [9]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    10. [10]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    11. [11]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    12. [12]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    13. [13]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    14. [14]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    15. [15]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    16. [16]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    17. [17]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    18. [18]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    19. [19]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    20. [20]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

Metrics
  • PDF Downloads(0)
  • Abstract views(694)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return