Citation: Shi-Yang Shao, Jun-Qiao Ding, Li-Xiang Wang. New applications of poly(arylene ether)s in organic light-emitting diodes[J]. Chinese Chemical Letters, ;2016, 27(8): 1201-1208. doi: 10.1016/j.cclet.2016.07.006 shu

New applications of poly(arylene ether)s in organic light-emitting diodes

  • Corresponding author: Jun-Qiao Ding, junqiaod@ciac.ac.cn Li-Xiang Wang, lixiang@ciac.ac.cn
  • Received Date: 11 May 2016
    Revised Date: 5 July 2016
    Accepted Date: 6 July 2016
    Available Online: 16 August 2016

Figures(7)

  • Compared with conventional p-conjugated polymers, poly(arylene ether)s (PAEs) may take advantages of excellent thermal properties, well-defined effective conjugated length and no catalyst contamination. Recently, their applications have been extended from engineering plastics to optoelectronic materials. In this review, various kinds of functional PAEs used as fluorescent polymers, host polymers and phosphorescent polymers in organic light-emitting diodes (OLEDs) are outlined, and their molecular design, synthesis and device performance are overviewed.
  • 加载中
    1. [1]

      W.F. Hale, A.G. Farnham, R.N. Johnson, R.A. Clendinning. Poly(aryl ethers) by nucleophilic aromatic substitution. II. Thermal stability, J. Polym. Sci.[J]. Part A: Polym. Chem., 1967,5:2399-2414. doi: 10.1002/pol.1967.150050917

    2. [2]

      R.N. Johnson, A.G. Farnham. Poly(aryl ethers) by nucleophilic aromatic substitution. III. Hydrolytic side reactions, J. Polym. Sci.[J]. Part A: Polym. Chem., 1967,5:2415-2427. doi: 10.1002/pol.1967.150050918

    3. [3]

      R.N. Johnson, A.G. Farnham, R.A. Clendinning, W.F. Hale, C.N. Merriam. Poly(aryl ethers) by nucleophilic aromatic substitution. I. Synthesis and properties, J. Polym. Sci.[J]. Part A: Polym. Chem., 1967,5:2375-2398. doi: 10.1002/pol.1967.150050916

    4. [4]

      S. Rahmani, A.S.Z. Mahani. Synthesis and characterization of novel poly(arylene ether)s containing 1, 3, 4-oxadiazole and triazole units through click chemistry[J]. Macromol. Res., 2015,23:1018-1025. doi: 10.1007/s13233-015-3133-y

    5. [5]

      M.G. Dhara, S. Banerjee. Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups[J]. Prog. Polym. Sci., 2010,35:1022-1077. doi: 10.1016/j.progpolymsci.2010.04.003

    6. [6]

      Z. Yang, I. Sokolik, F.E. Karasz. A soluble blue-light-emitting polymer[J]. Macromolecules, 1993,26:1188-1190. doi: 10.1021/ma00057a047

    7. [7]

      K.T. Nielsen, K. Bechgaard, F.C. Krebs. Removal of palladium nanoparticles from polymer materials[J]. Macromolecules, 2005,38:658-659. doi: 10.1021/ma047635t

    8. [8]

      C. Hosokawa, N. Kawasaki, S. Sakamoto, T. Kusumoto. Bright blue electroluminescence from hole transporting polycarbonate[J]. Appl. Phys. Lett., 1992,61:2503-2505. doi: 10.1063/1.108162

    9. [9]

      T. Burnell, J.A. Cella, P. Donahue. Synthesis and electrooptical properties of copolymers derived from phenol-functionalized telechelic oligofluorenes[J]. Macromolecules, 2005,38:10667-10677. doi: 10.1021/ma0518353

    10. [10]

      I.K. Spiliopoulos, J.A. Mikroyannidis. Synthesis of soluble, blue-light-emitting rigid-rod polyamides and polyimides prepared from 2', 6', 3''', 5'''-tetraphenylor tetra(4-biphenylyl)-4, 4""-diamino-p-quinquephenyl[J]. Macromolecules, 1998,31:515-521. doi: 10.1021/ma970490o

    11. [11]

      G.S. Liou, S.H. Hsiao, N.K. Huang, Y.L. Yang. Synthesis, photophysical, and electrochromic characterization of wholly aromatic polyamide blue-light-emitting materials[J]. Macromolecules, 2006,39:5337-5346. doi: 10.1021/ma0608469

    12. [12]

      C. Hamciuc, E. Hamciuc, M. Homocianu, A. Nicolescu, I.D. Carja. Blue lightemitting polyamide and poly(amide-imide)s containing 1, 3, 4-oxadiazole ring in the side chain[J]. Dyes Pigments, 2015,114:110-123. doi: 10.1016/j.dyepig.2014.10.018

    13. [13]

      C.H. Ku, C.H. Kuo, M.K. Leung, K.H. Hsieh. Carbazole-oxadiazole containing polyurethanes as phosphorescent host for organic light emitting diodes[J]. Eur. Polym. J., 2009,45:1545-1553. doi: 10.1016/j.eurpolymj.2009.01.024

    14. [14]

      S.W. Hwang, Y. Chen. Photoluminescent and electrochemical properties of novel poly(aryl ether)s with isolated hole-transporting carbazole and electron-transporting 1, 3, 4-oxadiazole fluorophores[J]. Macromolecules, 2002,35:5438-5443. doi: 10.1021/ma012181a

    15. [15]

      S.H. Chen, Y. Chen. Poly(p-phenylenevinylene) derivatives containing electrontransporting aromatic triazole or oxadiazole Segments[J]. Macromolecules, 2005,38:53-60. doi: 10.1021/ma048990m

    16. [16]

      H.C. Li, Y.F. Hu, Y.G. Zhang. Novel thermally stable blue-light-emitting polymer containing N, N, N', N'-tetraphenyl-phenylenediamine units and its intramolecular energy transfer[J]. Chem. Mater., 2002,14:4484-4486. doi: 10.1021/cm0255203

    17. [17]

      T. Ahn, H.K. Shim. Synthesis and luminescent properties of blue light emitting polymers containing both hole and electron transporting units[J]. Macromol. Chem. Phys., 2001,202:3180-3188. doi: 10.1002/(ISSN)1521-3935

    18. [18]

      I.D. Parker, Q. Pei, M. Marrocco. Efficient blue electroluminescence from a fluorinated polyquinoline[J]. Appl. Phys. Lett., 1994,65:1272-1274. doi: 10.1063/1.112092

    19. [19]

      Y.Q. Liu, H. Ma, A.K.Y. Jen. Synthesis and characterization of a novel bipolar polymer for light-emitting diodes[J]. Chem. Commun., 1998:2747-2748.

    20. [20]

      S.W. Hwang, Y. Chen. Synthesis and electrochemical and optical properties of novel poly(aryl ether)s with isolated carbazole and p-quaterphenyl chromophores[J]. Macromolecules, 2001,34:2981-2986. doi: 10.1021/ma001855z

    21. [21]

      G.X. Jiang, J. Wu, B. Yao. Synthesis and characterization of blue-lightemitting poly(aryl ether)s containing oligofluorenes in the main chain[J]. Macromolecules, 2006,39:7950-7958. doi: 10.1021/ma0612273

    22. [22]

      G.X. Jiang, B. Yao, Y.H. Geng. Poly(aryl ether)s containing ter- and pentafluorene pendants for efficient blue light emission[J]. Macromolecules, 2006,39:1403-1409. doi: 10.1021/ma052282z

    23. [23]

      G.X. Jiang, C.L. Bian, J.Q. Ding, L.X. Wang. Synthesis and characterization of blue light-emitting poly(aryl ether)s containing pyrimidine-incorporated oligofluorene pendants with bipolar feature[J]. Chin. J. Polym. Sci., 2013,31:787-797. doi: 10.1007/s10118-013-1279-7

    24. [24]

      C.L. Bian, G.X. Jiang, H. Tong. Pure blue electroluminescent poly(aryl ether)s with dopant-host systems, J. Polym. Sci.[J]. Part A: Polym. Chem., 2011,49:3911-3919. doi: 10.1002/pola.24828

    25. [25]

      C.L. Bian, G.X. Jiang, Y.X. Cheng, Z.Y. Xie, L.X. Wang. Poly(aryl ether)s for efficient white electroluminescence with simultaneous bicolor emission[J]. Acta Polym. Sin., 2012:334-343.  

    26. [26]

      Y. Kawamura, S. Yanagida, S.R. Forrest. Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers[J]. J. Appl. Phys., 2002,92:87-93. doi: 10.1063/1.1479751

    27. [27]

      M.A. Baldo, D.F. O'Brien, Y. You. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998,395:151-154. doi: 10.1038/25954

    28. [28]

      M. Sudhakar, P.I. Djurovich, T.E. Hogen-Esch, M.E. Thompson. Phosphorescence quenching by conjugated polymers[J]. J. Am. Chem. Soc., 2003,125:7796-7797. doi: 10.1021/ja0343297

    29. [29]

      H.H. Chou, C.H. Cheng. A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs[J]. Adv. Mater., 2010,22:2468-2471. doi: 10.1002/adma.v22:22

    30. [30]

      M.K. Mathai, V.E. Choong, S.A. Choulis, B. Krummacher, F. So. Highly efficient solution processed blue organic electrophosphorescence with 14 lm/W luminous efficacy[J]. Appl. Phys. Lett., 2006,88243512. doi: 10.1063/1.2212060

    31. [31]

      A. van Dijken, J.J.A.M. Bastiaansen, N.M.M. Kiggen. Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes[J]. J. Am. Chem. Soc., 2004,126:7718-7727. doi: 10.1021/ja049771j

    32. [32]

      K. Brunner, A. van Dijken, H. Börner. Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: tuning the HOMO level without influencing the triplet energy in small molecules[J]. J. Am. Chem. Soc., 2004,126:6035-6042. doi: 10.1021/ja049883a

    33. [33]

      S.Y. Shao, J.Q. Ding, T.L. Ye. A novel, bipolar polymeric host for highly efficient blue electrophosphorescence: a non-conjugated poly(aryl ether) containing triphenylphosphine oxide units in the electron-transporting main chain and carbazole units in hole-transporting side chains[J]. Adv. Mater., 2011,23:3570-3574. doi: 10.1002/adma.201101074

    34. [34]

      J. Liu, L.J. Bu, J.P. Dong. Green light-emitting polyfluorenes with improved color purity incorporated with 4, 7-diphenyl-2, 1, 3-benzothiadiazole moieties[J]. J. Mater. Chem., 2007,17:2832-2838. doi: 10.1039/b700004a

    35. [35]

      C.H. Chien, S.F. Liao, C.H. Wu. Electrophosphorescent polyfluorenes containing osmium complexes in the conjugated backbone[J]. Adv. Funct. Mater., 2008,18:1430-1439. doi: 10.1002/adfm.v18:9

    36. [36]

      J. Liu, L. Chen, S.Y. Shao. Highly efficient red electroluminescent polymers with dopant/host system and molecular dispersion feature: polyfluorene as the host and 2, 1, 3-benzothiadiazole derivatives as the red dopant[J]. J. Mater. Chem., 2008,18:319-327. doi: 10.1039/B712562C

    37. [37]

      Z.H. Ma, J.Q. Ding, B.H. Zhang. Red-emitting polyfluorenes grafted with quinoline-based iridium complex: "simple polymeric chain, unexpected high efficiency"[J]. Adv. Funct. Mater., 2010,20:138-146. doi: 10.1002/adfm.v20:1

    38. [38]

      Z.H. Ma, L.C. Chen, J.Q. Ding. Green electrophosphorescent polymers with poly(3, 6-carbazole) as the backbone: a linear structure does realize high efficiency[J]. Adv. Mater., 2011,23:3726-3729. doi: 10.1002/adma.v23.32

    39. [39]

      J. Liu, L. Yu, C.M. Zhong. Highly efficient green-emitting electrophosphorescent hyperbranched polymers using a bipolar carbazole-3, 6-diyl-co-2, 8-octyldibenzothiophene-S, S-dioxide-3, 7-diyl unit as the branch[J]. RSC Adv., 2012,2:689-696. doi: 10.1039/C1RA00610J

    40. [40]

      S.Y. Shao, Z.H. Ma, J.Q. Ding. Spiro-linked hyperbranched architecture in electrophosphorescent conjugated polymers for tailoring triplet energy back transfer[J]. Adv. Mater., 2012,24:2009-2013. doi: 10.1002/adma.201104544

    41. [41]

      S. Tokito, M. Suzuki, F. Sato, M. Kamachi, K. Shirane. High-efficiency phosphorescent polymer light-emitting devices[J]. Org. Electron., 2003,4:105-111. doi: 10.1016/j.orgel.2003.08.005

    42. [42]

      Y.M. You, S.H. Kim, H.K. Jung, S.Y. Park. Blue electrophosphorescence from iridium complex covalently bonded to the poly (9-dodecyl-3-vinylcarbazole): suppressed phase segregation and enhanced energy transfer[J]. Macromolecules, 2006,39:349-356. doi: 10.1021/ma052015t

    43. [43]

      S.Y. Shao, J.Q. Ding, L.X. Wang, X.B. Jing, F.S. Wang. Highly efficient blue electrophosphorescent polymers with fluorinated poly(arylene ether phosphine oxide) as backbone[J]. J. Am. Chem. Soc., 2012,134:15189-15192. doi: 10.1021/ja305634j

    44. [44]

      S.Y. Shao, J.Q. Ding, L.X. Wang, X.B. Jing, F.S. Wang. Synthesis and characterization of yellow-emitting electrophosphorescent polymers based on a fluorinated poly(-arylene ether phosphine oxide) scaffold[J]. J. Mater. Chem., 2012,22:24848-24855. doi: 10.1039/c2jm34421a

    45. [45]

      S.Y. Shao, J.Q. Ding, L.X. Wang, X.B. Jing, F.S. Wang. White electroluminescence from All-phosphorescent single polymers on a fluorinated poly(arylene ether phosphine oxide) backbone simultaneously grafted with blue and yellow phosphors[J]. J. Am. Chem. Soc., 2012,134:20290-20293. doi: 10.1021/ja310158j

    46. [46]

      G.L. Tu, Q.G. Zhou, Y.X. Cheng. White electroluminescence from polyfluorene chemically doped with 1, 8-napthalimide moieties[J]. Appl. Phys. Lett., 2004,85:2172-2174. doi: 10.1063/1.1793356

    47. [47]

      J. Liu, S.Y. Shao, L. Chen. White electroluminescence from a single polymer system: improved performance by means of enhanced efficiency and red-shifted luminescenceofthe blue-light-emittingspecies[J]. Adv.Mater., 2007,19:1859-1863. doi: 10.1002/(ISSN)1521-4095

    48. [48]

      J.X. Jiang, Y.H. Xu, W. Yang. High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission[J]. Adv. Mater., 2006,18:1769-1773. doi: 10.1002/(ISSN)1521-4095

    49. [49]

      J. Liu, L. Chen, S.Y. Shao. Three-color white electroluminescence from a single polymer system with blue, green and red dopant units as individual emissive species and polyfluorene as individual polymer host[J]. Adv. Mater., 2007,19:4224-4228. doi: 10.1002/(ISSN)1521-4095

    50. [50]

      Q. Wang, J.Q. Ding, D.G. Ma. Harvesting excitons via two parallel channels for efficient white organic leds with nearly 100% internal quantum efficiency: fabrication and emission-mechanism analysis[J]. Adv. Funct. Mater., 2009,19:84-95. doi: 10.1002/adfm.v19:1

    51. [51]

      D.A. Poulsen, B.J. Kim, B. Ma, C.S. Zonte, J.M.J. Fréchet. Site isolation in phosphorescent bichromophoric block copolymers designed for white electroluminescence[J]. Adv. Mater., 2010,22:77-82. doi: 10.1002/adma.v22:1

  • 加载中
    1. [1]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    2. [2]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    3. [3]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    4. [4]

      Hanying LiWee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523

    5. [5]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    6. [6]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    7. [7]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    8. [8]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    11. [11]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    12. [12]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    13. [13]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    14. [14]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    15. [15]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    16. [16]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    17. [17]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    18. [18]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    19. [19]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    20. [20]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

Metrics
  • PDF Downloads(3)
  • Abstract views(789)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return