-
[1]
Shi F., Tse M.K., Pohl M.M.. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations[J]. Angew. Chem. Int. Ed.,
2007,46:8866-8868.
doi: 10.1002/(ISSN)1521-3773
-
[2]
Garade A.C., Bharadwaj M., Bhagwat S.V., Athawale A.A., Rode C.V.. An efficient γ-Fe2O3 catalyst for liquid phase air oxidation of p-hydroxybenzyl alcohol under mild conditions[J]. Catal. Commun.,
2009,10:485-489.
doi: 10.1016/j.catcom.2008.10.044
-
[3]
Dadhania H.N., Raval D.K., Dadhania A.N.. Magnetically retrievable magnetite (Fe3O4) immobilized ionic liquid: an efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols[J]. Catal. Sci. Technol.,
2015,5:4806-4812.
doi: 10.1039/C5CY00849B
-
[4]
Paul B., Bhuyan B., Purkayastha D.D., Dhar S.S.. Facile synthesis of α-Fe2O3 nanoparticles and their catalytic activity in oxidation of benzyl alcohols with periodic acid[J]. Catal. Commun.,
2015,69:48-54.
doi: 10.1016/j.catcom.2015.05.017
-
[5]
Kundu T.K., Mukherjee M., Chakravorty D., Sinha T.P.. Growth of nano-α-Fe2O3 in a titania matrix by the sol-gel route[J]. J. Mater. Sci.,
1998,33:1759-1763.
doi: 10.1023/A:1004376515384
-
[6]
Bhosale M.A., Ummineni D., Sasaki T., Nishio-Hamane D., Bhanage B.M.. Magnetically separable γ-Fe2O3 nanoparticles: an efficient catalyst for acylation of alcohols, phenols, and amines using sonication energy under solvent free condition, J[J]. Mol. Catal. A Chem. 404-,
2015,405:8-17.
-
[7]
Leó P.M., Morin C., Philouze C.. Structure revision of medermycin/lactoquinomycin A and of related C-8 glycosylated naphthoquinones[J]. Org. Lett.,
2002,4:2711-2714.
doi: 10.1021/ol026222e
-
[8]
Tatsuta K., Ozeki H., Yamaguchi M., Tanaka M., Okui T.. Enantioselective total synthesis of medermycin (lactoquinomycin)[J]. Tetrahedron Lett.,
1990,31:5495-5498.
doi: 10.1016/S0040-4039(00)97881-X
-
[9]
Shaterian H.R., Azizi K.. Acidic ionic liquids catalyzed one-pot, pseudo fivecomponent, and diastereoselective synthesis of highly functionalized piperidine derivatives, J[J]. Mol. Liq.,
2013,180:187-191.
doi: 10.1016/j.molliq.2013.01.020
-
[10]
Veisi H., Sedrpoushan A., Mohammadi P., Faraji A.R., Sajjadifar S.. A new recyclable 1, 4-bis(3-methylimidazolium-1-yl)butane ditribromide[bMImB] (Br3)2 ionic liquid reagent for selective bromination of anilines or phenols and a-bromination of alkanones under mild conditions[J]. RSC Adv.,
2014,4:25898-25903.
doi: 10.1039/c4ra03006k
-
[11]
Hallett J.P., Welton T.. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2[J]. Chem. Rev.,
2011,111:3508-3576.
doi: 10.1021/cr1003248
-
[12]
Welton T.. Room-temperature ionic liquids, Solvents for synthesis and catalysis[J]. Chem. Rev.,
1999,99:2071-2084.
doi: 10.1021/cr980032t
-
[13]
Otokesh S., Kolvari E., Amoozadeh A., Koukabi N.. Magnetic nanoparticle-supported imidazole tribromide: a green, mild, recyclable and metal-free catalyst for the oxidation of sulfides to sulfoxides in the presence of aqueous hydrogen peroxide[J]. RSC Adv.,
2015,5:53749-53756.
doi: 10.1039/C5RA07530K
-
[14]
Giernoth R.. Task-specific ionic liquids[J]. Angew. Chem. Int. Ed,
2010,49:2834-3839.
doi: 10.1002/anie.200905981
-
[15]
Lee S.G.. Functionalized imidazolium salts for task-specific ionic liquids and their applications[J]. Chem. Commun.,
2006:1049-1063.
-
[16]
J. Zhu, H. Bienayme, Multicomponent Reactions-Superior Chemistry Technology for the New Millennium, Wiley, Weinheim (2005).
-
[17]
Ugi I.. Recent progress in the chemistry of multicomponent reactions[J]. Pure Appl. Chem.,
2001,73:187-192.
-
[18]
Ramón D.J., Yus M.. Asymmetric multicomponent reactions (AMCRs): the new frontier[J]. Angew. Chem. Int. Ed.,
2005,44:1602-1634.
doi: 10.1002/anie.200460548
-
[19]
Dömling A.. Recent developments in isocyanide based multicomponent reactions in applied chemistry[J]. Chem. Rev.,
2006,106:17-89.
doi: 10.1021/cr0505728
-
[20]
Zhang X.Y., Li X.Y., Fan X.S.. A novel synthesis of pyrazolo [3, 4-b]pyridine derivatives through multi-component reaction in ionic liquid[J]. Chin. Chem. Lett.,
2008,19:153-156.
doi: 10.1016/j.cclet.2007.12.009
-
[21]
Dömling A., Ugi I.. Multicomponent reactions with isocyanides[J]. Angew. Chem. Int. Ed.,
2000,39:3168-3210.
doi: 10.1002/(ISSN)1521-3773
-
[22]
Trost B.M.. Atom economy-a challenge for organic synthesis: homogeneous catalysis leads the way[J]. Angew. Chem. Int. Ed.,
1995,34:259-281.
doi: 10.1002/(ISSN)1521-3773
-
[23]
S.W. Pelletier, Alkaloids: Chemical and Biological Perspectives, John Wiley & Sons, New York, 1987.
-
[24]
Daly J.W., Spande T.F., Garraffo H.M.. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds[J]. J. Nat. Prod.,
2005,68:1556-1575.
doi: 10.1021/np0580560
-
[25]
Watson P.S., Jiang B., Scott B.. A diastereoselective synthesis of 2, 4-disubstituted piperidines: scaffolds for drug discovery[J]. Org. Lett.,
2000,2:3679-3681.
doi: 10.1021/ol006589o
-
[26]
Petit S., Nallet J.P., Guillard M.. Synthèses et activités psychotropes de 3. 4-diarylpipéridines. Corrélation structure-activite et recherche d'une activité antihypertensive[J]. Eur. J. Med. Chem.,
1991,26:19-32.
doi: 10.1016/0223-5234(91)90209-6
-
[27]
Zhou Y.F., Gregor V.E., Ayida B.K.. Synthesis and SAR of 3, 5-diaminopiperidine derivatives: novel antibacterial translation inhibitors as aminoglycoside mimetics[J]. Bioorg. Med. Chem. Lett.,
2007,17:1206-1210.
doi: 10.1016/j.bmcl.2006.12.024
-
[28]
Misra M., Pandey S.K., Pandey V.P.. Organocatalyzed highly atom economic one pot synthesis of tetrahydropyridines as antimalarials[J]. Bioorg. Med. Chem.,
2009,17:625-633.
doi: 10.1016/j.bmc.2008.11.062
-
[29]
Ho B., Crider A.M., Stables J.P.. Synthesis and structure-activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores[J]. Eur. J. Med. Chem.,
2001,36:265-286.
doi: 10.1016/S0223-5234(00)01206-X
-
[30]
Boehm T., Stöcker W.. Über die Bildung von γ-piperidonderivaten aus Azetessigester, aromatischen Aldehyden und Aminen, eine Modifikation der Hantzsch schen Pyridinsynthese, Arch[J]. Pharm.,
1943,281:62-77.
-
[31]
Mukhopadhyay C., Rana S., Butcher R.J., Schmiedekamp A.M.. First report of syn isomers in the diastereoselective synthesis of highly functionalized piperidines catalysed by wet picric acid: factors influencing the syn-anti ratios[J]. Tetrahedron Lett.,
2011,52:5835-5840.
doi: 10.1016/j.tetlet.2011.08.140
-
[32]
Sajadikhah S.S., Maghsoodlou M.T., Hazeri N., Habibi-Khorassani S.M., Shams-Najafi S.J.. One-pot multicomponent synthesis of highly substituted piperidines using p-toluenesulfonic acid monohydrate as catalyst[J]. Monatsh Chem.,
2012,143:939-945.
doi: 10.1007/s00706-011-0671-7
-
[33]
Khan A.T., Parvin T., Choudhury L.H.. Effects of substituents in the β-Position of 1, 3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: a facile access to functionalized piperidines[J]. J. Org. Chem.,
2008,73:8398-8402.
doi: 10.1021/jo8014962
-
[34]
Khan A.T., Lal M., Khan M.M.. Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB)[J]. Tetrahedron Lett.,
2010,51:4419-4424.
doi: 10.1016/j.tetlet.2010.06.069
-
[35]
Khan A.T., Khan M.M., Bannuru K.K.R.. Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines[J]. Tetrahedron,
2010,66:7762-7772.
doi: 10.1016/j.tet.2010.07.075
-
[36]
Agrawal N.R., Bahekar S.P., Sarode P.B., Zade S.S., Chandak H.S.. L-Proline nitrate: a recyclable and green catalyst for the synthesis of highly functionalized piperidines[J]. RSC Adv.,
2015,5:47053-47059.
doi: 10.1039/C5RA08022C
-
[37]
Paul B., Purkayastha D.D., Dhar S.S., Das S., Haldar S.. Facile one-pot strategy to prepare Ag/Fe2O3 decorated reduced graphene oxide nanocomposite and its catalytic application in chemoselective reduction of nitroarenes[J]. J. Alloys Compd.,
2016,681:316-323.
doi: 10.1016/j.jallcom.2016.04.229
-
[38]
Paul B., Bhuyan B., Purkayastha D.D., Dhar S.S., Patel B.K.. Hexamethonium bis(tribromide) (HMBTB) a recyclable and high bromine containing reagent[J]. Tetrahedron Lett.,
2015,56:5646-5650.
doi: 10.1016/j.tetlet.2015.08.063
-
[39]
Dey R.R., Paul B., Dhar S.S.. Novel metal-and mineral-acid-free synthesis of organic ammonium tribromides and application of ethylenephenanthrolium bistribromide for bromination of active methylene group of 1, 3-diketones and b-ketoesters[J]. Synth. Commun.,
2015,45:714-726.
doi: 10.1080/00397911.2014.979509
-
[40]
Dey R.R., Paul B., Dhar S.S., Bhattacharjee S.. Novel protocol for the synthesis of organic ammonium tribromides and investigation of 1, 1'-(Ethane-1, 2-diyl)dipiperidinium bis(tribromide) in the silylation of alcohols and thiols[J]. Chem. Lett.,
2014,43:1545-1547.
doi: 10.1246/cl.140564
-
[41]
Bora U., Bose G., Chaudhuri M.K.. Regioselective bromination of organic substrates by tetrabutylammonium bromide promoted by V2O5 H2O2: an environmentally favorable synthetic protocol[J]. Org. Lett.,
2000,2:247-249.
doi: 10.1021/ol9902935
-
[42]
M.K. Choudhuri, U. Bora, S.K. Dehury, et al., Process for preparing quaternary ammonium tribromides, US 7005548B2.
-
[43]
Paul B., Bhuyan B., Purkayastha D.D., Dhar S.S.. Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (retz.) sw. and studies of their photocatalytic and anticoagulative activities[J]. J. Mol. Liq.,
2015,212:813-817.
doi: 10.1016/j.molliq.2015.10.032
-
[44]
Zboril R., Mashlan M., Petridis D.. Iron(Ⅲ) oxides from thermal processes-synthesis, structural and magnetic properties, mössbauer spectroscopy characterization, and applications[J]. Chem. Mater.,
2002,14:969-982.
doi: 10.1021/cm0111074
-
[45]
Mou F.Z., Guan J.G., Xiao Z.D.. Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/(-phase-shell hierarchical nanostructures with strong As(V) removal capability[J]. J. Mater. Chem.,
2011,21:5414-5421.
doi: 10.1039/c0jm03726e