Citation: Paul Bappi, Vadivel Sethumathavan, Sankar Dhar Siddhartha. α-Fe2O3 immobilized benzimidazolium tribromide as novel magnetically retrievable catalyst for one-pot synthesis of highly functionalized piperidines[J]. Chinese Chemical Letters, ;2016, 27(11): 1725-1730. doi: 10.1016/j.cclet.2016.07.005 shu

α-Fe2O3 immobilized benzimidazolium tribromide as novel magnetically retrievable catalyst for one-pot synthesis of highly functionalized piperidines

  • Corresponding author: Paul Bappi, bappipaulnits@gmail.com Sankar Dhar Siddhartha, ssd_iitg@hotmail.com
  • Received Date: 11 May 2016
    Revised Date: 27 June 2016
    Accepted Date: 4 July 2016
    Available Online: 21 November 2016

Figures(7)

  • Nanostructured α-Fe2O3 were prepared by precipitation followed by calcination method.Cetyltrimethylammonium bromide (CTAB) was used as surfactant.The nano α-Fe2O3 was then silanized with (3-chloropropyl)-triethoxysilane (CPTES) by room temperature mixing of α-Fe2O3 and CPTES to produce silane coated α-Fe2O3(ClPr-Si@Fe2O3).As-synthesized ClPr-Si@Fe2O3 was functionalized via covalent grafting of benzimidazole to produce 3-(1-benzimidazole) Pr-Si@Fe2O3.This was further reacted with bromine to afford α-Fe2O3 immobilized benzimidazolium tribromide (α-Fe2O3-BIM tribromide).This ionic liquid (IL) α-Fe2O3 BIM tribromide was characterized by FT-IR, XRD, TEM, SEM, TGA, VSM, EDX and BET analysis.The as-synthesized IL tribromide was used as catalyst for one-pot synthesis of highly substituted piperidines.The method is greener in terms of solvent selection, recovery of the catalyst and efficiency.
  • 加载中
    1. [1]

      Shi F., Tse M.K., Pohl M.M.. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations[J]. Angew. Chem. Int. Ed., 2007,46:8866-8868. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Garade A.C., Bharadwaj M., Bhagwat S.V., Athawale A.A., Rode C.V.. An efficient γ-Fe2O3 catalyst for liquid phase air oxidation of p-hydroxybenzyl alcohol under mild conditions[J]. Catal. Commun., 2009,10:485-489. doi: 10.1016/j.catcom.2008.10.044

    3. [3]

      Dadhania H.N., Raval D.K., Dadhania A.N.. Magnetically retrievable magnetite (Fe3O4) immobilized ionic liquid: an efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols[J]. Catal. Sci. Technol., 2015,5:4806-4812. doi: 10.1039/C5CY00849B

    4. [4]

      Paul B., Bhuyan B., Purkayastha D.D., Dhar S.S.. Facile synthesis of α-Fe2O3 nanoparticles and their catalytic activity in oxidation of benzyl alcohols with periodic acid[J]. Catal. Commun., 2015,69:48-54. doi: 10.1016/j.catcom.2015.05.017

    5. [5]

      Kundu T.K., Mukherjee M., Chakravorty D., Sinha T.P.. Growth of nano-α-Fe2O3 in a titania matrix by the sol-gel route[J]. J. Mater. Sci., 1998,33:1759-1763. doi: 10.1023/A:1004376515384

    6. [6]

      Bhosale M.A., Ummineni D., Sasaki T., Nishio-Hamane D., Bhanage B.M.. Magnetically separable γ-Fe2O3 nanoparticles: an efficient catalyst for acylation of alcohols, phenols, and amines using sonication energy under solvent free condition, J[J]. Mol. Catal. A Chem. 404-, 2015,405:8-17.

    7. [7]

      Leó P.M., Morin C., Philouze C.. Structure revision of medermycin/lactoquinomycin A and of related C-8 glycosylated naphthoquinones[J]. Org. Lett., 2002,4:2711-2714. doi: 10.1021/ol026222e

    8. [8]

      Tatsuta K., Ozeki H., Yamaguchi M., Tanaka M., Okui T.. Enantioselective total synthesis of medermycin (lactoquinomycin)[J]. Tetrahedron Lett., 1990,31:5495-5498. doi: 10.1016/S0040-4039(00)97881-X

    9. [9]

      Shaterian H.R., Azizi K.. Acidic ionic liquids catalyzed one-pot, pseudo fivecomponent, and diastereoselective synthesis of highly functionalized piperidine derivatives, J[J]. Mol. Liq., 2013,180:187-191. doi: 10.1016/j.molliq.2013.01.020

    10. [10]

      Veisi H., Sedrpoushan A., Mohammadi P., Faraji A.R., Sajjadifar S.. A new recyclable 1, 4-bis(3-methylimidazolium-1-yl)butane ditribromide[bMImB] (Br3)2 ionic liquid reagent for selective bromination of anilines or phenols and a-bromination of alkanones under mild conditions[J]. RSC Adv., 2014,4:25898-25903. doi: 10.1039/c4ra03006k

    11. [11]

      Hallett J.P., Welton T.. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2[J]. Chem. Rev., 2011,111:3508-3576. doi: 10.1021/cr1003248

    12. [12]

      Welton T.. Room-temperature ionic liquids, Solvents for synthesis and catalysis[J]. Chem. Rev., 1999,99:2071-2084. doi: 10.1021/cr980032t

    13. [13]

      Otokesh S., Kolvari E., Amoozadeh A., Koukabi N.. Magnetic nanoparticle-supported imidazole tribromide: a green, mild, recyclable and metal-free catalyst for the oxidation of sulfides to sulfoxides in the presence of aqueous hydrogen peroxide[J]. RSC Adv., 2015,5:53749-53756. doi: 10.1039/C5RA07530K

    14. [14]

      Giernoth R.. Task-specific ionic liquids[J]. Angew. Chem. Int. Ed, 2010,49:2834-3839. doi: 10.1002/anie.200905981

    15. [15]

      Lee S.G.. Functionalized imidazolium salts for task-specific ionic liquids and their applications[J]. Chem. Commun., 2006:1049-1063.  

    16. [16]

      J. Zhu, H. Bienayme, Multicomponent Reactions-Superior Chemistry Technology for the New Millennium, Wiley, Weinheim (2005).

    17. [17]

      Ugi I.. Recent progress in the chemistry of multicomponent reactions[J]. Pure Appl. Chem., 2001,73:187-192.

    18. [18]

      Ramón D.J., Yus M.. Asymmetric multicomponent reactions (AMCRs): the new frontier[J]. Angew. Chem. Int. Ed., 2005,44:1602-1634. doi: 10.1002/anie.200460548

    19. [19]

      Dömling A.. Recent developments in isocyanide based multicomponent reactions in applied chemistry[J]. Chem. Rev., 2006,106:17-89. doi: 10.1021/cr0505728

    20. [20]

      Zhang X.Y., Li X.Y., Fan X.S.. A novel synthesis of pyrazolo [3, 4-b]pyridine derivatives through multi-component reaction in ionic liquid[J]. Chin. Chem. Lett., 2008,19:153-156. doi: 10.1016/j.cclet.2007.12.009

    21. [21]

      Dömling A., Ugi I.. Multicomponent reactions with isocyanides[J]. Angew. Chem. Int. Ed., 2000,39:3168-3210. doi: 10.1002/(ISSN)1521-3773

    22. [22]

      Trost B.M.. Atom economy-a challenge for organic synthesis: homogeneous catalysis leads the way[J]. Angew. Chem. Int. Ed., 1995,34:259-281. doi: 10.1002/(ISSN)1521-3773

    23. [23]

      S.W. Pelletier, Alkaloids: Chemical and Biological Perspectives, John Wiley & Sons, New York, 1987.

    24. [24]

      Daly J.W., Spande T.F., Garraffo H.M.. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds[J]. J. Nat. Prod., 2005,68:1556-1575. doi: 10.1021/np0580560

    25. [25]

      Watson P.S., Jiang B., Scott B.. A diastereoselective synthesis of 2, 4-disubstituted piperidines: scaffolds for drug discovery[J]. Org. Lett., 2000,2:3679-3681. doi: 10.1021/ol006589o

    26. [26]

      Petit S., Nallet J.P., Guillard M.. Synthèses et activités psychotropes de 3. 4-diarylpipéridines. Corrélation structure-activite et recherche d'une activité antihypertensive[J]. Eur. J. Med. Chem., 1991,26:19-32. doi: 10.1016/0223-5234(91)90209-6

    27. [27]

      Zhou Y.F., Gregor V.E., Ayida B.K.. Synthesis and SAR of 3, 5-diaminopiperidine derivatives: novel antibacterial translation inhibitors as aminoglycoside mimetics[J]. Bioorg. Med. Chem. Lett., 2007,17:1206-1210. doi: 10.1016/j.bmcl.2006.12.024

    28. [28]

      Misra M., Pandey S.K., Pandey V.P.. Organocatalyzed highly atom economic one pot synthesis of tetrahydropyridines as antimalarials[J]. Bioorg. Med. Chem., 2009,17:625-633. doi: 10.1016/j.bmc.2008.11.062

    29. [29]

      Ho B., Crider A.M., Stables J.P.. Synthesis and structure-activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores[J]. Eur. J. Med. Chem., 2001,36:265-286. doi: 10.1016/S0223-5234(00)01206-X

    30. [30]

      Boehm T., Stöcker W.. Über die Bildung von γ-piperidonderivaten aus Azetessigester, aromatischen Aldehyden und Aminen, eine Modifikation der Hantzsch schen Pyridinsynthese, Arch[J]. Pharm., 1943,281:62-77.  

    31. [31]

      Mukhopadhyay C., Rana S., Butcher R.J., Schmiedekamp A.M.. First report of syn isomers in the diastereoselective synthesis of highly functionalized piperidines catalysed by wet picric acid: factors influencing the syn-anti ratios[J]. Tetrahedron Lett., 2011,52:5835-5840. doi: 10.1016/j.tetlet.2011.08.140

    32. [32]

      Sajadikhah S.S., Maghsoodlou M.T., Hazeri N., Habibi-Khorassani S.M., Shams-Najafi S.J.. One-pot multicomponent synthesis of highly substituted piperidines using p-toluenesulfonic acid monohydrate as catalyst[J]. Monatsh Chem., 2012,143:939-945. doi: 10.1007/s00706-011-0671-7

    33. [33]

      Khan A.T., Parvin T., Choudhury L.H.. Effects of substituents in the β-Position of 1, 3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: a facile access to functionalized piperidines[J]. J. Org. Chem., 2008,73:8398-8402. doi: 10.1021/jo8014962

    34. [34]

      Khan A.T., Lal M., Khan M.M.. Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB)[J]. Tetrahedron Lett., 2010,51:4419-4424. doi: 10.1016/j.tetlet.2010.06.069

    35. [35]

      Khan A.T., Khan M.M., Bannuru K.K.R.. Iodine catalyzed one-pot five-component reactions for direct synthesis of densely functionalized piperidines[J]. Tetrahedron, 2010,66:7762-7772. doi: 10.1016/j.tet.2010.07.075

    36. [36]

      Agrawal N.R., Bahekar S.P., Sarode P.B., Zade S.S., Chandak H.S.. L-Proline nitrate: a recyclable and green catalyst for the synthesis of highly functionalized piperidines[J]. RSC Adv., 2015,5:47053-47059. doi: 10.1039/C5RA08022C

    37. [37]

      Paul B., Purkayastha D.D., Dhar S.S., Das S., Haldar S.. Facile one-pot strategy to prepare Ag/Fe2O3 decorated reduced graphene oxide nanocomposite and its catalytic application in chemoselective reduction of nitroarenes[J]. J. Alloys Compd., 2016,681:316-323. doi: 10.1016/j.jallcom.2016.04.229

    38. [38]

      Paul B., Bhuyan B., Purkayastha D.D., Dhar S.S., Patel B.K.. Hexamethonium bis(tribromide) (HMBTB) a recyclable and high bromine containing reagent[J]. Tetrahedron Lett., 2015,56:5646-5650. doi: 10.1016/j.tetlet.2015.08.063

    39. [39]

      Dey R.R., Paul B., Dhar S.S.. Novel metal-and mineral-acid-free synthesis of organic ammonium tribromides and application of ethylenephenanthrolium bistribromide for bromination of active methylene group of 1, 3-diketones and b-ketoesters[J]. Synth. Commun., 2015,45:714-726. doi: 10.1080/00397911.2014.979509

    40. [40]

      Dey R.R., Paul B., Dhar S.S., Bhattacharjee S.. Novel protocol for the synthesis of organic ammonium tribromides and investigation of 1, 1'-(Ethane-1, 2-diyl)dipiperidinium bis(tribromide) in the silylation of alcohols and thiols[J]. Chem. Lett., 2014,43:1545-1547. doi: 10.1246/cl.140564

    41. [41]

      Bora U., Bose G., Chaudhuri M.K.. Regioselective bromination of organic substrates by tetrabutylammonium bromide promoted by V2O5 H2O2: an environmentally favorable synthetic protocol[J]. Org. Lett., 2000,2:247-249. doi: 10.1021/ol9902935

    42. [42]

      M.K. Choudhuri, U. Bora, S.K. Dehury, et al., Process for preparing quaternary ammonium tribromides, US 7005548B2.

    43. [43]

      Paul B., Bhuyan B., Purkayastha D.D., Dhar S.S.. Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (retz.) sw. and studies of their photocatalytic and anticoagulative activities[J]. J. Mol. Liq., 2015,212:813-817. doi: 10.1016/j.molliq.2015.10.032

    44. [44]

      Zboril R., Mashlan M., Petridis D.. Iron(Ⅲ) oxides from thermal processes-synthesis, structural and magnetic properties, mössbauer spectroscopy characterization, and applications[J]. Chem. Mater., 2002,14:969-982. doi: 10.1021/cm0111074

    45. [45]

      Mou F.Z., Guan J.G., Xiao Z.D.. Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/(-phase-shell hierarchical nanostructures with strong As(V) removal capability[J]. J. Mater. Chem., 2011,21:5414-5421. doi: 10.1039/c0jm03726e

  • 加载中
    1. [1]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    2. [2]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    7. [7]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    8. [8]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    9. [9]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    10. [10]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    11. [11]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    12. [12]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    13. [13]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    14. [14]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    15. [15]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    16. [16]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    17. [17]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    18. [18]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    19. [19]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    20. [20]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

Metrics
  • PDF Downloads(2)
  • Abstract views(682)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return