Citation: Qing-Lan Guo, Sheng Lin, Ya-Nan Wang, Cheng-Gen Zhu, Cheng-Bo Xu, Jian-Gong Shi. Gastrolatathioneine, an unusual ergothioneine derivative from an aqueous extract of “tian ma”: A natural product co-produced by plant and symbiotic fungus[J]. Chinese Chemical Letters, ;2016, 27(10): 1577-1581. doi: 10.1016/j.cclet.2016.06.040 shu

Gastrolatathioneine, an unusual ergothioneine derivative from an aqueous extract of “tian ma”: A natural product co-produced by plant and symbiotic fungus

  • Corresponding author: Jian-Gong Shi, shijg@imm.ac.cn
  • Received Date: 3 June 2016
    Revised Date: 14 June 2016
    Accepted Date: 23 June 2016
    Available Online: 1 October 2016

Figures(5)

  • Gastrolatathioneine (1), an unusual natural product derived from ergothioneine, a fungal amino acid containing an imidazole-2-thione moiety, was isolated from an aqueous extract of "tian ma" (the Gastrodia elata rhizomes). The structure of 1 including the absolute configuration was determined by extensive spectroscopic data analysis, combined with comparison of an experimental circular dichroism spectrum and calculated electronic circular dichroism spectra of stereoisomers, and confirmed by X-ray crystallography. The natural origin of 1 was proved by HPLC-ESIMS analysis of the crude extract. A biogenetic pathway of 1 is proposed on the basis of metabolic post-modification of ergothioneine that is biosynthesized by a symbiotic fungus. The plant and symbiotic fungus are co-producers of 1.
  • 加载中
    1. [1]

      Jiangsu New Medical College, Dictionary of Traditional Chinese Medicine, Shanghai Science and Technology Publishing House, Shanghai, 1979, pp. 315-317.

    2. [2]

      J. Zhou, X.Y. Pu, Y.B. Yang. Nine phenolic compounds of fresh Gastrodia elata Blume[J]. Chin. Sin. Bull., 1982,27:179-181.  

    3. [3]

      E.J. Shin, W.K. Whang, S. Kim. Parishin C attenuates phencyclidine-induced schizophrenia-like psychosis in mice:involvements of 5-HT1A receptor[J]. J. Pharmacol. Sci., 2010,113:404-408. doi: 10.1254/jphs.10040SC

    4. [4]

      N.K. Huang, J.H. Lin, J.T. Lin. A new drug design targeting the adenosinergic system for Huntington's disease[J]. PLoS One, 2011,6e20934. doi: 10.1371/journal.pone.0020934

    5. [5]

      K.Y. Kam, S.J. Yu, N. Jeong. p-Hydroxybenzyl alcohol prevents brain injury and behavioral impairment by activating Nrf2, PDI, and neurotrophic factor genes in a rat model of brain ischemia[J]. Mol. Cells, 2011,31:209-215. doi: 10.1007/s10059-011-0028-4

    6. [6]

      X.M. Zhao, Y. Zou, H. Xu. Gastrodin protect primary cultured rat hippocampal neurons against amyloid-beta peptide-induced neurotoxicity via ERK1/2-Nrf2 pathway[J]. Brain Res., 2012,1482:13-21. doi: 10.1016/j.brainres.2012.09.010

    7. [7]

      B.W. Kim, S. Koppula, J.W. Kim. Modulation of LPS-stimulated neuroinflammation in BV-2 microglia by Gastrodia elata:4-Hydroxybenzyl alcohol is the bioactive candidate[J]. J. Ethnopharmacol., 2012,139:549-557. doi: 10.1016/j.jep.2011.11.048

    8. [8]

      W.D. Xu, Y. Tian, Q.L. Guo, Y.C. Yang, J.G. Shi. Secoeuphoractin, a minor diterpenoid with a new skeleton from Euphorbia micractina[J]. Chin. Chem. Lett., 2014,25:1531-1534. doi: 10.1016/j.cclet.2014.09.012

    9. [9]

      Y. Tian, Q.L. Guo, W.D. Xu. A minor diterpenoid with a new 6/5/7/3 fusedring skeleton from Euphorbia micractina[J]. Org Lett, 2014,16:3950-3953. doi: 10.1021/ol501760h

    10. [10]

      F. Wang, Y.P. Jiang, X.L. Wang. Aromatic glycosides from the flower buds of Lonicera japonica[J]. J. Asian Nat. Prod. Res., 2013,15:492-501. doi: 10.1080/10286020.2013.785531

    11. [11]

      W.X. Song, Y.C. Yang, J.G. Shi. Two new β-hydroxy amino acid-coupled secoiridoids from the flower buds of Lonicera japonica:isolation, structure elucidation, semisynthesis, and biological activities[J]. Chin. Chem. Lett., 2014,25:1215-1219. doi: 10.1016/j.cclet.2014.05.037

    12. [12]

      Z.B. Jiang, W.X. Song, J.G. Shi. Two new 1-(60-O-acyl-b-D-glucopyranosyl) pyridinium-3-carboxylates from the flower buds of Lonicera japonica[J]. Chin. Chem. Lett., 2015,26:69-72. doi: 10.1016/j.cclet.2014.10.011

    13. [13]

      Y. Yu, Z.B. Jiang, W.X. Song. Glucosylated caffeoylquinic acid derivatives from the flower buds of Lonicera japonica[J]. Acta Pharm. Sinica B, 2015,5:210-214. doi: 10.1016/j.apsb.2015.01.012

    14. [14]

      Y.F. Liu, M.H. Chen, X.L. Wang. Antiviral enantiomers of a bisindole alkaloid with a new carbon skeleton from the roots of Isatis indigotica[J]. Chin. Chem. Lett., 2015,26:931-936. doi: 10.1016/j.cclet.2015.05.052

    15. [15]

      Y.F. Liu, M.H. Chen, Q.L. Guo. Antiviral glycosidic bisindole alkaloids from the roots of Isatis indigotica[J]. J. Asian Nat. Prod. Res., 2015,17:689-704. doi: 10.1080/10286020.2015.1055729

    16. [16]

      Y.F. Liu, M.H. Chen, S. Lin. Indole alkaloid glucosides from the roots of Isatis indigotica[J]. J. Asian Nat. Prod. Res., 2016,18:1-12. doi: 10.1080/10286020.2015.1117452

    17. [17]

      Y.F. Liu, X.L. Wang, M.H. Chen. Three pairs of alkaloid enantiomers from the root of Isatis indigotica[J]. Acta Pharm. Sinica B, 2016,6:141-147. doi: 10.1016/j.apsb.2016.01.003

    18. [18]

      M.H. Chen, S. Lin, Y.N. Wang. Antiviral stereoisomers of 3,5-bis(2-hydroxybut-3-en-1-yl)-1,2,4-thiadiazole from the roots Isatis indigotica[J]. Chin. Chem. Lett., 2016,27:643-648. doi: 10.1016/j.cclet.2016.01.042

    19. [19]

      Y.P. Jiang, Y.F. Liu, Q.L. Guo. Acetylenes and fatty acids from Codonopsis pilosula[J]. Acta Pharm. Sinica B, 2015,5:215-222. doi: 10.1016/j.apsb.2015.03.005

    20. [20]

      Y.P. Jiang, Y.F. Liu, Q.L. Guo. C14-Polyacetylene glucosides from Codonopsis pilosula, J. Asian Nat[J]. Prod. Res, 2015,17:601-614.  

    21. [21]

      Y.P. Jiang, Q.L. Guo, Y.F. Liu, J.G. Shi. Codonopiloneolignanin A, a polycyclic neolignan with a new carbon skeleton from the roots of Codonopsis pilosula, Chin[J]. Chem. Lett., 2016,27:55-58.  

    22. [22]

      Y.P. Jiang, Y.F. Liu, Q.L. Guo. Sesquiterpene glycosides from the roots of Codonopsis pilosula[J]. Acta Pharm. Sinica B, 2016,6:46-54. doi: 10.1016/j.apsb.2015.09.007

    23. [23]

      Z.B. Jiang, B.Y. Jiang, C.G. Zhu. Aromatic acid derivatives from the lateral roots of Aconitum carmichaelii[J]. J. Asian Nat. Prod. Res., 2014,16:891-900. doi: 10.1080/10286020.2014.939585

    24. [24]

      Z.B. Jiang, X.H. Meng, B.Y. Jiang. Two 2-(quinonylcarboxamino)benzoates from the lateral roots of Aconitum carmichaelii[J]. Chin. Chem. Lett., 2015,26:653-656. doi: 10.1016/j.cclet.2015.04.011

    25. [25]

      Y.N. Wang, S. Lin, M.H. Chen. Chemical constituents from aqueous extract of Gastrodia elata, China[J]. J. Chin. Mater. Med., 2012,37:1775-1781.  

    26. [26]

      Q.L. Guo, Y.N. Wang, S. Lin. 4-Hydroxybenzyl-substituted amino acid derivatives from Gastrodia elata[J]. Acta Pharm. Sinica B, 2015,5:350-357. doi: 10.1016/j.apsb.2015.02.002

    27. [27]

      Q.L. Guo, Y.N. Wang, C.G. Zhu. 4-Hydroxybenzyl-substituted glutathione derivatives from Gastrodia elata[J]. J. Asian Nat. Prod. Res, 2015,17:439-454. doi: 10.1080/10286020.2015.1040000

    28. [28]

      Y. Zhang, M. Li, R.X. Kang. NHBA isolated from Gastrodia elata exerts sedative and hypnotic effects in sodium pentobarbital-treated mice[J]. Pharmacol. Biochem. Behav, 2012,102:450-457. doi: 10.1016/j.pbb.2012.06.002

    29. [29]

      J.J. He, Z.G. Luo, L. Huang. Ambient mass spectrometry imaging metabolomics method provides novel insights into the action mechanism of drug candidates[J]. Anal. Chem., 2015,87:5372-5379. doi: 10.1021/acs.analchem.5b00680

    30. [30]

      Spartan 10; Wavefunction, Inc., Irvine, CA.

    31. [31]

      M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09. Revision C. 01, Gaussian, Inc, Wallingford, CT, 2009.

    32. [32]

      Bruker. SHELXTL. Structure Determination Programs, Version 5.10, Bruker AXS Inc., 6300 Enterprise Lane, Madison, WI 53719-1173, USA, 1997.

    33. [33]

      C., M., K., Y. Sugawara, b-Hydroxyergothioneine, a new ergothioneine derivative from the mushroom Lyophyllum connatum, and its protective activity against carbon tetrachloride-induced injury in primary culture hepatocytes, Biosci[J]. Biotechnol. Biochem, 2005,69:357-363. doi: 10.1271/bbb.69.357

    34. [34]

      X.C. Li, D. Ferreira, Y.Q. Ding. Determination of absolute configuration of natural products:theoretical calculation of electronic circular dichroism as a tool[J]. Curr. Org. Chem., 2010,14:1678-1697. doi: 10.2174/138527210792927717

    35. [35]

      P. Fu, J.B. MacMillan. Spithioneines A and B, two new bohemamine derivatives possessing ergothioneine moiety from a marine-derived Streptomyces spinoverrucosus[J]. Org. Lett., 2015,17:3046-3049. doi: 10.1021/acs.orglett.5b01328

    36. [36]

      C.E. Hand, J.F. Honek. Biological chemistry of naturally occurring thiols of microbial and marine origin[J]. J. Nat. Prod., 2005,68:293-308. doi: 10.1021/np049685x

    37. [37]

      J. Ey, E. Schömig, D. Taubert. Dietary sources and antioxidant effects of ergothioneine[J]. J. Agric. Food Chem., 2007,55:6466-6474. doi: 10.1021/jf071328f

    38. [38]

      D.S.L. Toh, F.S.G. Cheung, M. Murray. Functional analysis of novel variants in the organic cation/ergothioneine transporter 1 identified in Singapore populations[J]. Mol. Pharmaceutics, 2013,10:2509-2516. doi: 10.1021/mp400193r

    39. [39]

      F.P. Seebeck. In vitro reconstitution of mycobacterial ergothioneine biosynthesis[J]. J. Am. Chem. Soc., 2010,132:6632-6633. doi: 10.1021/ja101721e

    40. [40]

      W. Hu, H. Song, A.S. Her. Bioinformatic and biochemical characterizations of C S bond formation and cleavage enzymes in the Fungus Neurospora crassa ergothioneine biosynthetic pathway[J]. Org. Lett., 2014,16:5382-5385. doi: 10.1021/ol502596z

    41. [41]

      D. Ackermann. P.H. List, Ü ber das vorkommen von herzynin, ergothionein, homarin, trigonellin, glykokollbetain, cholin, trimethylamin, adenin und fast sämtlicher aminosa üren des eiweißes in Limulus polyphemus[J]. L, Bio. Chem, 1958,313:30-36.

    42. [42]

      H.X. Liu, Y.B. Luo, H. Liu. Studies of mycorrhizal fungi of Chinese orchids and their role in orchid conservation in China-a review[J]. Bot. Rev., 2010,76:241-262. doi: 10.1007/s12229-010-9045-9

  • 加载中
    1. [1]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    4. [4]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    5. [5]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    6. [6]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    7. [7]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    8. [8]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    9. [9]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    12. [12]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    13. [13]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    15. [15]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

Metrics
  • PDF Downloads(4)
  • Abstract views(775)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return