Citation: Ablikim Obold, Ming Zhang, Feng Li. Evolution of emission manners of organic light-emitting diodes: From emission of singlet exciton to emission of doublet exciton[J]. Chinese Chemical Letters, ;2016, 27(8): 1345-1349. doi: 10.1016/j.cclet.2016.06.030 shu

Evolution of emission manners of organic light-emitting diodes: From emission of singlet exciton to emission of doublet exciton

  • Corresponding author: Feng Li, lifeng01@jlu.edu.cn
  • Received Date: 11 May 2016
    Revised Date: 2 June 2016
    Accepted Date: 6 June 2016
    Available Online: 27 August 2016

Figures(5)

  • The emission manners of organic light-emitting diodes (OLEDs) have experienced almost three-decade evolution. In this review, we briefly summarized the emission manners of OLEDs including: (i) emission from singlet exciton; (ii) emission from triplet exciton; (iii) emission from singlet exciton converted from triplet exciton. Then we introduced a new type of OLEDs with the emission from doublet exciton, wherein organic neutral radicals are used as emitters. Due to the spin-allowed transition of doublet excitons, using neutral radicals as emitters is believed to be a new way to break the 25% upper limit of internal quantum efficiency of OLEDs. The progress of emissive stable neutral radicals is also shortly reviewed.
  • 加载中
    1. [1]

      C.W. Tang, S. VanSlyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51:913-915. doi: 10.1063/1.98799

    2. [2]

      (a) Y. Cao, I.D. Park, G. Yu, et al., Improved quantum efficiency for electroluminescence in semiconducting polymers, Nature 397(1999) 414-417; (b) Z. Shuai, D. Beljonne, R.J. Silbey, et al., Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes, Phys. Rev. Lett. 84(2000) 131-134; (c) Y.R. Sun,N.C. Giebink, H.Kanno,etal.,Managementof singlet andtriplet excitons for efficient white organic light-emitting devices, Nature 440(2006) 908-912; (d) Y.T. Tao, C.L. Yang, J.G. Qin, Organic host materials for phosphorescent organic light-emitting diodes, Chem. Soc. Rev. 40(2011) 2943-2970; (e) B.H. Zhang, G.P. Tan, C.S. Lam, et al., high-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex, Adv. Mater. 24(2012) 1873-1877; (f) M.R. Zhu, C.L. Yang, Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes, Chem. Soc. Rev. 42(2013) 4963-4976; (g) T.H. Han, Y. Lee, M.R. Choi, et al., Extremely efficient flexible organic lightemitting diodes with modified graphene anode, Nat. Photonics 6(2012) 105-110; (h) M.A. Baldo, M.E. Thompson, S.R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, Nature 403(2000) 750-753; (i) J. Kido, M. Kimura, K. Nagai, Multilayer white light-emitting organic electroluminescent device, Science 267(1995) 1332-1334. 

    3. [3]

      (a) M.A. Baldo, D.F. O'brien, Y. You, et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395(1998) 151-154; (b) Y.G. Ma, H.Y. Zhang, J.C. Shen, et al., Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes, Synth. Met. 94(1998) 245-248; (c) C. Adachi, M.A. Baldo, M.E. Thompson, et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys. 90(2001) 5048-5051; (d) K. Li, G.S.M. Tong, Q.Y. Wan, et al., Highly phosphorescent platinum(II) emitters:photophysics, materials and biological applications, Chem. Sci. 7(2016) 1653-1673. 

    4. [4]

      (a) A. Endo, M. Ogasawara, A. Takahashi, et al., Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes a novel mechanism for electroluminescence, Adv. Mater. 21(2009) 4802-4806; (b) Q.S. Zhang, J. Li, K. Shizu, et al., Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes, J. Am. Chem. Soc. 134(2012) 14706-14709; (c) H. Uoyama, K. Goushi, K. Shizu, et al., Highly efficient organic light-emitting diodes from delayed fluorescence, Nature 492(2012) 234-238. 

    5. [5]

      (a) J. Kido, Y. Iizumi, Fabrication of highly efficient organic electroluminescent devices, Appl. Phys. Lett. 73(1998); (b) C.J. Chiang, A. Kimyonok, M.K. Etherington, et al., Ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: the key role of triplet fusion, Adv. Funct. Mater. 23(2013) 739-746; (c) B.H. Wallikewitz, D. Kabra, S. Gélinas, et al., Triplet dynamics in fluorescent polymer light-emitting diodes, Phys. Rev. B 85(2012) 045209. 

    6. [6]

      (a) W.J. Li, D.D. Liu, F.Z. Shen, et al., A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence, Adv. Funct. Mater. 22(2012) 2797-2803; (b) W.J. Li, Y.Y. Pan, R. Xiao, et al., Employing 100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state, Adv. Funct. Mater. 24(2014) 1609-1614; (c) L. Yao, S.T. Zhang, R. Wang, et al., Highly efficient near-infrared organic lightemitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative excitons, Angew. Chem. 126(2014) 2151-2155. 

    7. [7]

      A. Obolda, Q.M. Peng, C.Y. He. Triplet-polaron-interaction-induced upconversion from triplet to singlet: a possible way to obtain highly efficient OLEDs[J]. Adv. Mater., 2016,28:4740-4746. doi: 10.1002/adma.v28.23

    8. [8]

      (a) F. Li, A kind of OLEDs based on the transition of doublet electron of neutral pi radicals, Chinese Patent ZL201410018393.9(01/2014). (b) QM. Peng, A. Obolda, M. Zhang, et al., Organic light-emitting diodes using a neutral π-radical as emitter: the emission from a doublet, Angew. Chem. Int. Ed. 54(2015) 7091-7095.

    9. [9]

      M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, Oxford, 1999.

    10. [10]

      (a) S.O. Jeon, K.S. Yook, C.W. Joo, et al., High-efficiency deep-blue-phosphorescent organic light-emitting diodes using a phosphine oxide and a phosphine sulfide high-triplet-energy host material with bipolar charge-transport properties, Adv. Mater. 22(2010) 1872-1876; (b) S. Schmidbauer, A. Hohenleutner, B. König, Chemical degradation in organic light-emitting devices: mechanisms and implications for the design of new materials, Adv. Mater. 25(2013) 2114-2129; (c) S.L. Gong, Y.H. Chen, C.L. Yang, et al., De Novo design of silicon-bridged molecule towards a bipolar host: all-phosphor white organic light-emitting devices exhibiting high efficiency and low efficiency roll-off, Adv. Mater. 22(2010) 5370-5373. 

    11. [11]

      V. Jankus, E.W. Snedden, D.W. Bright. Energy upconversion via triplet fusion in super yellow PPV films doped with palladium tetraphenyltetrabenzoporphyrin: a comprehensive investigation of exciton dynamics[J]. Adv. Funct. Mater., 2013,23:384-393. doi: 10.1002/adfm.201201284

    12. [12]

      (a) H. Wang, L. Xie, Q. Peng, et al., Novel thermally activated delayed fluorescence materials-thioxanthone derivatives and their applications for highly efficient OLEDs, Adv. Mater. 26(2014) 5198-5204; (b) Y. Tao, K. Yuan, T. Chen, et al., Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics, Adv. Mater. 26(2014) 7931-7958. 

    13. [13]

      (a) K. Masui, H. Nakanotani, C. Adachi, Analysis of exciton annihilation in highefficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence, Org. Electron. 14(2013) 2721-2726; (b) T. Komino, H. Nomura, T. Koyanagi, et al., Suppression of efficiency roll-off characteristics in thermally activated delayed fluorescence based organic lightemitting diodes using randomly oriented host molecules, Chem. Mater. 25(2013) 3038-3047. 

    14. [14]

      (a) L. Yao, B. Yang, Y.G. Ma, Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics, Sci. China Chem. 57(2014) 335-345; (b) Y.Y. Pan, W.J. Li, S.T. Zhang, et al., High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons, Adv. Opt. Mater. 2(2014) 510-515. 

    15. [15]

      V. Gamero, D. Velasco, S. Latorre. [4-(N-Carbazolyl)-2,6-dichlorophenyl] bis (2,4,6-trichlorophenyl) methyl radical an efficient red light-emitting paramagnetic molecule[J]. Tetrahedron Lett, 2006,47:2305-2309. doi: 10.1016/j.tetlet.2006.02.022

    16. [16]

      P. Chen, Z.H. Xiong, Q.M. Peng. Magneto-electroluminescence as a tool to discern the origin of delayed fluorescence: reverse intersystem crossing or triplet-triplet annihilation?[J]. Adv. Opt. Mater., 2014,2:142-148. doi: 10.1002/adom.201300422

    17. [17]

      M. Gomberg. An Instance of trivalent carbon: triphenylmethyl[J]. J. Am. Chem. Soc., 1900,22:757-771. doi: 10.1021/ja02049a006

    18. [18]

      C.J. Hawker, A.W. Bosman, E. Harth. New polymer synthesis by nitroxide mediated living radical polymerizations[J]. Chem. Rev., 2001,101:3661-3688. doi: 10.1021/cr990119u

    19. [19]

      J. Joseph, B. Kalyanaraman, J.S. Hyde. Trapping of nitric oxide by nitronyl nitroxides: an electron spin resonance investigation[J]. Biochem. Biophys. Res. Commun., 1993,192:926-934. doi: 10.1006/bbrc.1993.1504

    20. [20]

      R.G. Hicks, Stable Radicals, Wiley Online Library, 2010. 

    21. [21]

      M. Ballester. Inert free-radicals (IFR): a unique trivalent carbon species[J]. Acc. Chem. Res., 1985,18:380-387. doi: 10.1021/ar00120a004

    22. [22]

      (a) M. Ballester, J. Riera-Figueras, A. Rodríguez-Siurana, Synthesis and isolation of a perchlorotriphenylcarbonium salt, Tetrahedron Lett. 11(1970) 3615-3618; (b) M. Ballester, G. de la Fuente, Synthesis and isolation of a perchlorotriphenylcarbanion salt, Tetrahedron Lett. 11(1970) 4509-4510; (c) M. Ballester, J. Riera, J. Castañer, C. Badía, J.M. Monsó, Inert carbon free radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl radical series, J. Am. Chem. Soc. 93(1971) 2215-2225. 

    23. [23]

      V.D. Sholle, E.G. Rozantsev. Advances in the chemistry of stable hydrocarbon radicals[J]. Russ. Chem. Rev., 1973,42:1011-1019. doi: 10.1070/RC1973v042n12ABEH002781

    24. [24]

      (a) J.M. Rawson, A. Alberola, A. Whalley, Thiazyl radicals: old materials for new molecular devices, J. Mater. Chem. 16(2006) 2560-2575; (b) T. Kurata, K. Koshika, F. Kato, et al., An unpaired electron-based hole-transporting molecule: triarylamine-combined nitroxide radicals, Chem. Commun. (2007) 2986-2988; (c) A.F. Marye, G. Elizabeth, C.C. Chia, Photochemistry of table free radicals: the photolysis of perchlorotriphenylmethyl radicals, J. Am. Chem. Soc. 109(1987) 7088-7094; (d) I. Ratera, C. Sporer, M.D. Ruiz, et al., Solvent tuning from normal to inverted marcus region of intramolecular electron transfer in ferrocene-based organic radicals, J. Am. Chem. Soc. 129(2007) 6117-6129; (e) V. Lloveras, J. Vidal-Gancedo, T.M. Figueira-Duarte, et al., Tunneling versus hopping in mixed-valence oligo-p-phenylenevinylene polychlorinated bis(triphenylmethyl) radical anions, J. Am. Chem. Soc. 133(2011) 5818-5833; (f) F. Vera, M. Mas-Torrent, J. Esquena, et al., Microstructured objects produced by the supramolecular hierarchical assembly of an organic free radical gathering hydrophobic-amphiphilic characteristics, Chem. Sci. 3(2012) 1958-1962; (g) J. Guasch, L. Grisanti, M. Souto, et al., Intra- and intermolecular charge transfer in aggregates of tetrathiafulvalene-triphenylmethyl radical derivatives in solution, J. Am. Chem. Soc. 135(2013) 6958-6967; (h) R. Frisenda, R. Gaudenzi, C. Franco, et al., Kondo effect in a neutral and stable all organic radical single molecule break junction, Nano Lett. 15(2015) 3109-3114; (i) S. Castellanos, F. López-Calahorra, E. Brillas, et al., All-organic discotic radical with a spin-carrying rigid-core showing intracolumnar interactions and multifunctional properties, Angew. Chem. 121(2009) 6638-6641. 

    25. [25]

      J. Carilla, L. Fajarí, L. Juliá. Two functionalized free radicals of the tris(2,4,6-trichlorophenyl)methyl radical series. Synthesis, stability and EPR analysis[J]. Tetrahedron Lett., 1994,35:6529-6532. doi: 10.1016/S0040-4039(00)78264-5

    26. [26]

      D. Velasco, S. Castellanos, M. López. Red organic light-emitting radical adducts of carbazole and tris(2,4,6-trichlorotriphenyl)methyl radical that exhibit high thermal stability and electrochemical amphotericity[J]. J. Org. Chem., 2007,72:7523-7532. doi: 10.1021/jo0708846

    27. [27]

      S. Castellanos, D. Velasco, F. López-Calahorra. Taking advantage of the radical character of tris(2,4,6-trichlorophenyl)methyl to synthesize new paramagnetic glassy molecular materials[J]. J. Org. Chem., 2008,73:3759-3767. doi: 10.1021/jo702723k

    28. [28]

      (a) A. Heckmann, C. Lambert, M. Goebel, et al., Synthesis and photophysics of a neutral organic mixed-valence compound, Angew. Chem. Int. Ed. 43(2004) 5851-5856; (b) A. Heckmann, C. Lambert, Neutral organic mixed-valence compounds: synthesis and all-optical evaluation of electron-transfer parameters, J. Am. Chem. Soc. 129(2007) 5515-5527; (c) A. Heckmann, S. Dümmler, J. Pauli, et al., Highly fluorescent open-shell nir dyes: the time-dependence of back electron transfer in triarylamine-perchlorotriphenylmethyl radicals, J. Phys. Chem. C 113(2009) 20958-20966; (d) D.r. Reitzenstein, T. Quast, F. Kanal, et al., Synthesis and electron transfer characteristics of a neutral, low-band-gap, mixed-valence polyradical, Chem. Mater. 22(2010) 6641-6655; (e) A. Heckmann, C. Lambert, Organic mixed-valence compounds: a playground for electrons and holes, Angew. Chem. Int. Ed. 51(2012) 326-392. 

    29. [29]

      Y. Hattori, T. Kusamoto, H. Nishihara. Luminescence, stability, and proton response of an open-shell (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl) methyl radical[J]. Angew. Chem. Int. Ed., 2014,53:11845-11848. doi: 10.1002/anie.201407362

    30. [30]

      Y. Hattori, T. Kusamoto, H. Nishihara. Enhanced luminescent properties of an open-shell (3,5-dichloro-4-pyridyl)-bis(2,4,6-trichlorophenyl)methyl radical by coordination to gold[J]. Angew. Chem. Int. Ed., 2015,54:3731-3734. doi: 10.1002/anie.201411572

  • 加载中
    1. [1]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    2. [2]

      Hao ZhuoMing ZhangHengyuan ZhangHui LinGang YangSilu TaoCaijun ZhengXiaohong Zhang . Modified triphenylamine donors with shallower HOMO energy levels to construct long-wavelength TADF emitters of efficient organic light-emitting diodes. Chinese Chemical Letters, 2025, 36(5): 110760-. doi: 10.1016/j.cclet.2024.110760

    3. [3]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    4. [4]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    5. [5]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    6. [6]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    7. [7]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    8. [8]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    9. [9]

      Xinbao TongJiaying LiuYanqi ZhaoJingjun LiYe TianQingyi LiuShuiying GaoRong Cao . Metal-organic framework supported carbon quantum dots as white light-emitting phosphor. Chinese Chemical Letters, 2025, 36(7): 111058-. doi: 10.1016/j.cclet.2025.111058

    10. [10]

      Man XuQianyi LiJingyao MaHao LiYunfei ZhuFan YuKuande WangTao ZhouQuanyou FengLinghai XieJinyi Lin . Wide bandgap steric carbazole-fluorene-nanogrid polymers via metal-free CN polymerization for deep-blue polymer light-emitting diodes. Chinese Chemical Letters, 2026, 37(1): 111551-. doi: 10.1016/j.cclet.2025.111551

    11. [11]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    12. [12]

      Mimi WuShoufeng TangZhibin WangQingrui ZhangDeling Yuan . Molybdenum carbide activated calcium sulfite for antibiotic decontamination at near-neutral pH: Dissolved oxygen promoted bisulfite adsorption for singlet oxygen generation. Chinese Chemical Letters, 2025, 36(8): 110613-. doi: 10.1016/j.cclet.2024.110613

    13. [13]

      Matvey K. Shurikov Yuliana A. Kolesnikova Darya E. Votkina Pavel A. Abramov Taisiya S. Sukhikh Galina V. Romanenko Sergey L. Veber Dmitry E. Gorbunov Nina P. Gritsan Giuseppe Resnati Evgeny V. Tretyakov Vadim Yu. Kukushkin Pavel S. Postnikov Pavel V. Petunin . Engineering optical anisotropy in paramagnetic organic crystals: Dichroism of nitronyl nitroxide radicals. Chinese Journal of Structural Chemistry, 2025, 44(9): 100653-100653. doi: 10.1016/j.cjsc.2025.100653

    14. [14]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    15. [15]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    16. [16]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    17. [17]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    18. [18]

      Shengtao JiangMengjiao XieLimin JinYifan RenWentian ZhengSiping JiYanbiao Liu . New insights into electrocatalytic singlet oxygen generation for effective and selective water decontamination. Chinese Chemical Letters, 2025, 36(5): 110293-. doi: 10.1016/j.cclet.2024.110293

    19. [19]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    20. [20]

      Feng-Fan YangYin-Kang DingLin-Kai WuJiayue TianShuai DouWenjing WangLinfeng Liang . A 1,3,5-triazine μ3-bridged neutral Cu(Ⅰ) framework with enhanced stability and CO2 capture selectivity. Chinese Chemical Letters, 2025, 36(12): 110550-. doi: 10.1016/j.cclet.2024.110550

Metrics
  • PDF Downloads(3)
  • Abstract views(1963)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return