Citation: Hu Dong-Yan, Li Meng-Shun, Zhong Wen-Wu, Ji Jian-Xin, Zhu Jin, Wei Wei, Zhang Qiang, Cheng Ming. Direct synthesis of α-hydroxyketone phosphates from terminal alkynes and H-phosphine oxides in the presence of PhI(OAc)2 and H2O[J]. Chinese Chemical Letters, ;2016, 27(11): 1691-1695. doi: 10.1016/j.cclet.2016.05.029 shu

Direct synthesis of α-hydroxyketone phosphates from terminal alkynes and H-phosphine oxides in the presence of PhI(OAc)2 and H2O

Figures(6)

  • A simple and highly efficient one-pot method for the construction of α-hydroxyketone phosphates from terminal alkynes and H-phosphine oxides has been developed in the presence of PhI (OAc)2 and H2O.The present protocol provides an attractive approach to α-hydroxyketone phosphates in good to high yields, with the advantages of operation simplicity, the use of commercially available materials, broad substrate scope, high atom efficiency and good tolerance to scale-up synthesis.
  • 加载中
    1. [1]

      Bowler M.W., Cliff M.J., Waltho J.P., Blackburn G.M.. Why did nature select phosphate for its dominant roles in biology[J]. N. J. Chem., 2010,34:784-794. doi: 10.1039/b9nj00718k

    2. [2]

      (a) C. Schultz, Prodrugs of biologically active phosphate esters, Bioorg. Med. Chem. 11(2003) 885-898;
      (b) C.Ducho, U.Gorbig, S. Jessel, etal., Bis-cycloSal-d4T-monophosphates: drugs that deliver two molecules of bioactive nucleotides, J. Med. Chem. 50(2007) 1335-1346;
      (c) S.J. Hecker, M.D. Erion, Prodrugs of phosphates and phosphonates, J. Med. Chem. 51(2008) 2328-2345.

    3. [3]

      (a) S. Protti, M. Fagnoni, Phosphate esters as "tunable" reagents in organic synthesis, Chem. Commun. 31(2008) 3611-3621;
      (b) A. Parra, S. Reboredo, A.M. Martin Castro, J. Aleman, Metallic organophosphates as catalysts in asymmetric synthesis: a return journey, Org. Biomol. Chem. 10(2012) 5001-5020.

    4. [4]

      (a) R. Neumann, H.H. Peter, Insecticidal organophosphates: nature made them first, Experientia 43(1987) 1235-1237;
      (b) H.W. He, The use of OP and development of new organophosphorus agrochemicals in China, Phosphorus Sulfur Silicon Relat. Elem. 183(2008) 266-279;
      (c) J.Wink, F.R.Schmidt, G.Seibert, W.Aretz, Cyclipostins: novel hormone-sensitive lipase inhibitors from Streptomyces sp. DSM 13381, I. Taxonomic studies of the producer microorganism and fermentation results, J. Antibiot. 55(2002) 472-479;
      (d) L. Vìrtesy, B. Beck, M. Bronstrup, et al., Cyclipostins, novel hormone-sensitive lipase inhibitors from Streptomyces sp. DSM 13381, Ⅱ. Isolation, structure elucidation and biological properties, J. Antibiot. 55(2002) 480-494.

    5. [5]

      Ramirez F., Bauer J., Telefus C.D.. Introduction of the amide function into 1, 3, 2-dioxaphospholenes with pentavalent phosphorus[J]. J. Am. Chem. Soc., 1970,92:6935-6942. doi: 10.1021/ja00726a035

    6. [6]

      (a) F. Ramirez, B. Hansen, N.B. Desai, Kinetics and mechanisms of the rapid alkaline hydrolysis of dimethylphosphoacetoin, J. Am. Chem. Soc. 84(1962) 4588;
      (b) H. Witzel, A. Botta, K. Dimroth, Mechanismus der alkalischen hydrolyse von dialkyl-[2-oxo-alkyl]-phosphaten, Chem. Ber. 98(1965) 1465-1469;
      (c) R. Kluger, S.D. Taylor, Mechanisms of carbonyl participation in phosphate ester hydrolysis and their relationship to mechanisms for the carboxylation of biotin, J. Am. Chem. Soc. 113(1991) 996-1001;
      (d) F. Ramirez, J.F. Marecek, Synthesis of phosphodiesters: the cyclic enediol phosphoryl (CEP) method, Synthesis (1985) 449-488.

    7. [7]

      (a) F. Ramirez, N.B. Desai, Crystalline 1:1 adducts from the reaction of tertiary phosphate esters with ortho-quinones and with alpha-diketones. New routes to quinol-monophosphates and to ketol-monophosphates, J. Am. Chem. Soc. 82(1960) 2652-2653;
      (b) F. Ramirez, S.L. Glaser, A.J. Bigler, J.F. Pilot, Synthesis of sugar-like phosphates by the oxyphosphorane condensation. Reaction of glyoxal with trialkyl phosphites and preparation of phosphate esters of glycolaldehyde, a-hydroxy b-keto aldehydes, and hydroxy malon-aldehyde chloride, J. Am. Chem. Soc. 91(1969) 496-500;
      (c) F. Ramirez, S.B. Bhatia, A.J. Bigler, C.P. Smith, New syntheses of β-keto-α-hydroxy acid chlorides, of α-hydroxy β-diketones, and of their phosphate esters, J. Org. Chem. 33(1968) 1192-1196;
      (d) G.F. Koser, J.S. Lodaya, D.G. Ray, P.B. Kokil, Direct α-phosphoryloxylation of ketones and phosphoryloxylactonization of pentenoic acids with[hydroxy((bis(pheny1oxy)phosphory1)oxy)-ido]benzene, J. Am. Chem. Soc. 110(1988) 2987-2988;
      (e) T. Nabana, H. Togo, Reactivities of novel[hydroxy (tosyloxy)iodo]-arenes and[hydroxy(phosphoryloxy)iodo]arenes for a-tosyloxy lation and a-phosphoryloxylation of ketones, J. Org. Chem. 67(2002) 4362-4365.

    8. [8]

      Koser G.F., Chen K.C., Huang Y.L., Summers C.A.. Oxyphosphorylation of carbon with phosphoric acid and p-(dif1uoroiodo)toluene: synthesis of tris-ketol phosphates and their conversion into lithium bis-ketol phosphates[J]. J. Chem. Soc. Perkin Trans., 1994,1:1375-1376.

    9. [9]

      Morisrty R.M., Condeiu C., Tao A., Prskash O.. New organohyper-valent iodine reagents for α-methylphosphonylations and α-diphenyl-and a-dimethylphosphinylations[J]. Tetrahedron Lett., 1997,38:2401-2404. doi: 10.1016/S0040-4039(97)00388-2

    10. [10]

      Pu Y., Gao L.M., Liu H.J., Yan J.. An effective catalytic α-phosphoryloxylation of ketones with iodobenzene[J]. Synthesis, 2011,44:99-103.  

    11. [11]

      Liu C.L., Wei W., Yang D.S.. I2O5/DBU mediated direct α-phosphoryloxylation of ketones with H-phosphonates leading to α-hydroxyketone phosphates[J]. Tetrahedron, 2015,71:6901-6906. doi: 10.1016/j.tet.2015.07.017

    12. [12]

      Hubacz A., Makowiec S.. Direct conversion of secondary phosphine oxides and Hphosphinates with [di(acyloxy)iodo]benzenes to phosphinic and phosphonic amides[J]. Heteroatom Chem., 2009,20:81-86. doi: 10.1002/hc.v20:2

    13. [13]

      Moteki S.A., Usui A., Zhang T., Solorio Alvarado C.R., Maruoka K.. Site-selective oxidation of unactivated Csp3-H bonds with hypervalent iodine (Ⅲ) reagents[J]. Angew. Chem. Int. Ed., 2013,125:8819-8822. doi: 10.1002/ange.201304359

    14. [14]

      Khamarui S., Maiti R., Mondal R.R., Maiti D.K.. Reactant cum solvent water: generation of transient λ3-hypervalent iodine, its reactivity, mechanism and broad application[J]. RSC Adv., 2015,5:106633-106643. doi: 10.1039/C5RA21932A

    15. [15]

      (a) A. Christiansen, C. Li, M. Garland, et al., On the tautomerism of secondary phosphane oxides, Eur. J. Org. Chem. 14(2010) 2733-2741;
      (b) A.A. Bobrikova, M.P. Koroteev, A.M. Koroteev, Y.V. Nelyubina, E.E. Nifant'ev, Phosphorylation of N-glycosides derived from para-substituted aromatic amines, Russ. Chem. Bull 57(2008) 2021-2027.

    16. [16]

      Artyushin O.I., Sharova E.V., Petrovskii P.V., Odinets I.L.. N-Alkylation of amidothiophosphoryl compounds under phase-transfer catalysis conditions. Synthesis and properties of 1, 3, 2-thiazaphos-phacyclanes[J]. Russ. Chem. Bull., 2009,58:216-222. doi: 10.1007/s11172-009-0032-4

  • 加载中
    1. [1]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    2. [2]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    6. [6]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    13. [13]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    14. [14]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    15. [15]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    16. [16]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    17. [17]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    18. [18]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    19. [19]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    20. [20]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

Metrics
  • PDF Downloads(4)
  • Abstract views(732)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return