Citation: Li-Dan Hu, Yu-Lin Zhang, Hong Wang, Xing-Yue Peng, Yi Wang. Highly efficient detection of insulinotropic action of glucagon via GLP-1 receptor in mice pancreatic beta-cell with a novel perfusion microchip[J]. Chinese Chemical Letters, ;2016, 27(7): 1027-1031. doi: 10.1016/j.cclet.2016.05.023 shu

Highly efficient detection of insulinotropic action of glucagon via GLP-1 receptor in mice pancreatic beta-cell with a novel perfusion microchip

  • Corresponding author: Yi Wang, wangyideyouxiang@sohu.com
  • Received Date: 28 April 2016
    Revised Date: 18 May 2016
    Accepted Date: 24 May 2016
    Available Online: 1 July 2016

Figures(4)

  • Glucagon exhibits insulinotropic ability by activating cAMP through glucagon or glucagon-like peptide-1 (GLP-1) receptors. To investigate the mechanism of endogenous and exogenous glucagon on insulin release, we studied the receptor selectivity on pancreatic islet beta-cells by switching the glucose concentration from 20 mmol/L to 0 mmol/L. To measure the exact temporal relationship between glucagon and insulin release, we developed a quick, small volume, multi-channel polydimethylsiloxane (PDMS) microchip. At 0 mmol/L glucose, we observed an insulinotropic effect in both INS-1 cells and islets. Meanwhile, we observed a 63 ± 6.27 s delay of endogenous glucagon-induced insulin release. After treatment with glucagon and GLP-1 receptor antagonists, we found that endogenous glucagon utilized the glucagon receptor, whereas exogenous glucagon primarily utilized the GLP-1 receptor to promote insulin secretion. The microchip can also be used to describe the “glucagonocentric” vision of diabetes pathophysiology. Taken together, the insulinotropic mechanism of different receptors should be taken into account in clinical treatments.
  • 加载中
    1. [1]

      E.W. Sutherland, C. De Duve. Origin and distribution of the hyperglycemicglycogenolytic factor of the pancreas[J]. J. Biol. Chem., 1948,175:663-674.

    2. [2]

      R.H. Unger, A.D. Cherrington. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover[J]. J. Clin. Invest., 2012,122:4-12. doi: 10.1172/JCI60016

    3. [3]

      B.E. Dunning, J.E. Gerich. The role of a-cell dysregulation in fasting and postprandial hyperglycemia in type, 2 diabetes and therapeutic implications[J]. Endocr. Rev., 2007,28:253-283. doi: 10.1210/er.2006-0026

    4. [4]

      Y. Lee, E.D. Berglund, X.X. Yu. Hyperglycemia in rodent models of type, 2 diabetes requires insulin-resistant alpha cells[J]. Proc. Natl. Acad. Sci. U. S. A., 2014,111:13217-13222. doi: 10.1073/pnas.1409638111

    5. [5]

      R.H. Unger, L. Orci. The essential role of glucagon in the pathogenesis of diabetes mellitus[J]. Lancet, 1975,305:14-16. doi: 10.1016/S0140-6736(75)92375-2

    6. [6]

      A.D. Baron, L. Schaeffer, P. Shragg, O.G. Kolterman. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics[J]. Diabetes, 1987,36:274-283. doi: 10.2337/diab.36.3.274

    7. [7]

      H.Y. Gaisano, P.E. Macdonald, M. Vranic. Glucagon secretion and signaling in the development of diabetes[J]. Front. Physiol., 2012,3349.

    8. [8]

      S. Malmgren, B. Ahré n. Evidence for time dependent variation of glucagon secretion in mice[J]. Peptides, 2016,76:102-107. doi: 10.1016/j.peptides.2016.01.008

    9. [9]

      L.R. Nyman, K.S. Wells, W.S. Head. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets[J]. J. Clin. Invest., 2008,118:3790-3797. doi: 10.1172/JCI36209

    10. [10]

      E. Samols, G. Marri, V. Marks. Interrelationship of glucagon, insulin and glucose: the insulinogenic effect of glucagon[J]. Diabetes, 1966,15:855-866. doi: 10.2337/diab.15.12.855

    11. [11]

      P. Huypens, Z. Ling, D. Pipeleers, F. Schuit. Glucagon receptors on human islet cells contribute to glucose competence of insulin release[J]. Diabetologia, 2000,43:1012-1019. doi: 10.1007/s001250051484

    12. [12]

      K. Moens, D. Flamez, C. Van Schravendijk. Dual glucagon recognition by pancreatic β-cells via glucagon and glucagon-like peptide, 1 receptors[J]. Diabetes, 1998,47:66-72. doi: 10.2337/diab.47.1.66

    13. [13]

      J.S. Mohammed, Y. Wang, T.A. Harvat, J. Oberholzer, D.T. Eddington. Microfluidic device for multimodal characterization of pancreatic islets[J]. Lab Chip, 2009,9:97-106. doi: 10.1039/B809590F

    14. [14]

      S. Runge, B.S. Wulff, K. Madsen, H. Bräuner-Osborne, L.B. Knudsen. Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity[J]. Br. J. Pharmacol., 2003,138:787-794. doi: 10.1038/sj.bjp.0705120

    15. [15]

      L.J. Jelinek, S. Lok, G.B. Rosenberg. Expression cloning and signaling properties of the rat glucagon receptor[J]. Science, 1993,259:1614-1616. doi: 10.1126/science.8384375

    16. [16]

      L.B. Knudsen, D. Kiel, M. Teng. Small-molecule agonists for the glucagon-like peptide, 1 receptor[J]. Proc. Natl. Acad. Sci. U. S. A., 2007,104:937-942. doi: 10.1073/pnas.0605701104

    17. [17]

      D.J. Drucker, J. Philippe, S. Mojsov, W.L. Chick, J.F. Habener. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line[J]. Proc. Natl. Acad. Sci. U. S. A., 1987,84:3434-3438. doi: 10.1073/pnas.84.10.3434

    18. [18]

      B. Portha, C. Tourrel-Cuzin, J. Movassat. Activation of the GLP-1 receptor signalling pathway: a relevant strategy to repair a deficient beta-cell mass[J]. Exp. Diabetes Res., 2011,2011376509.  

    19. [19]

      P.E. MacDonald, W. El-Kholy, M.J. Riedel. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion[J]. Diabetes, 2002,51:S434-S442. doi: 10.2337/diabetes.51.2007.S434

    20. [20]

      K.M. Hope, P.O.T. Tran, H.R. Zhou. Regulation of α-cell function by the β-cell in isolated human and rat islets deprived of glucose: the “switch-off” hypothesis[J]. Diabetes, 2004,53:1488-1495. doi: 10.2337/diabetes.53.6.1488

    21. [21]

      G. Tian, S. Sandler, E. Gylfe, A. Tengholm. Glucose- and hormone-induced cAMP oscillations in α- and β-cells within intact pancreatic islets[J]. Diabetes, 2011,60:1535-1543. doi: 10.2337/db10-1087

    22. [22]

      L.R. Landa Jr., M. Harbeck, K. Kaihara. Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 b-cell line[J]. J. Biol. Chem., 2005,280:31294-31302. doi: 10.1074/jbc.M505657200

    23. [23]

      B. Hellman, A. Salehi, E. Grapengiesser, E. Gylfe. Isolated mouse islets respond to glucose with an initial peak of glucagon release followed by pulses of insulin and somatostatin in antisynchrony with glucagon[J]. Biochem. Biophys. Res. Commun., 2012,417:1219-1223. doi: 10.1016/j.bbrc.2011.12.113

    24. [24]

      H. Yoowarren, A.G. Willse, N. Hancock. Regulation of rat glucagon receptor expression[J]. Biochem. Biophys. Res. Commun., 1994,205:347-353. doi: 10.1006/bbrc.1994.2671

    25. [25]

      N. Abrahamsen, E. Nishimura. Regulation of glucagon and glucagon-like peptide-1 receptor messenger ribonucleic acid expression in cultured rat pancreatic islets by glucose, cyclic adenosine, 30, 50-monophosphate, and glucocorticoids[J]. Endocrinology, 1995,136:1572-1578.

    26. [26]

      G. Xu, H. Kaneto, D.R. Laybutt. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes[J]. Diabetes, 2007,56:1551-1558. doi: 10.2337/db06-1033

    27. [27]

      A.P. van Beek, E.R. de Haas, W.A. van Vloten. The glucagonoma syndrome and necrolytic migratory erythema: a clinical review[J]. Eur. J. Endocrinol., 2004,151:531-537. doi: 10.1530/eje.0.1510531

  • 加载中
    1. [1]

      Lu LiSuticha ChuntaXianzi ZhengHaisheng HeWei WuYi Luβ-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662

    2. [2]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    3. [3]

      Kai WangYun WangLihang WangZhuhai LiXi YuXuanhe YouDiwei WuYueming SongJiancheng ZengZongke ZhouShishu HuangYunfeng Lin . Therapeutic siRNA targeting CC chemokine receptor 2 loaded with tetrahedral framework nucleic acid alleviates neuropathic pain by regulating microglial polarization. Chinese Chemical Letters, 2025, 36(3): 109868-. doi: 10.1016/j.cclet.2024.109868

    4. [4]

      Qin YuHaisheng HeJianping QiYi LuWei Wu . Oral delivery of insulin by barbed microneedles actuated by intestinal peristalsis. Chinese Chemical Letters, 2024, 35(9): 109888-. doi: 10.1016/j.cclet.2024.109888

    5. [5]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    6. [6]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    7. [7]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    8. [8]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    9. [9]

      . 第41卷第1期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(1): -.

    10. [10]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    11. [11]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    12. [12]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    13. [13]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    14. [14]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    15. [15]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    16. [16]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    17. [17]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    18. [18]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    19. [19]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    20. [20]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

Metrics
  • PDF Downloads(1)
  • Abstract views(732)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return