Citation: Fan Xin-Meng, Yang Xian-Tao, Guo Yu-Jia, Wu Ren-Min, Pan De-Lin, Guan Zhu, Ling Xiao-Mei, Zhang Li-He, Yang Zhen-Jun. Insight into the deamination mechanism of 6-cyclopropylamino guanosine analogs for anti-HIV drug design[J]. Chinese Chemical Letters, ;2016, 27(12): 1759-1762. doi: 10.1016/j.cclet.2016.05.021 shu

Insight into the deamination mechanism of 6-cyclopropylamino guanosine analogs for anti-HIV drug design

  • Corresponding author: Guan Zhu, guanzhu_gz@bjmu.edu.cn Yang Zhen-Jun, yangzj@bjmu.edu.cn
  • Received Date: 22 February 2016
    Revised Date: 11 April 2016
    Accepted Date: 22 April 2016
    Available Online: 26 December 2016

Figures(5)

  • Deamination is a crucial step in the transformation of 6-cyclopropylamino guanosine prodrug to its active form. A convenient method using capillary electrophoresis (CE) without sample labeling was developed to analyze the deamination of a series of D-/L-6-cyclopropylamino guanosine analogs by mouse liver homogenate, mouse liver microsome, and adenosine deaminase (ADA). A two-step process involving a 6-amino guanosine intermediate formed by oxidative N-dealkylation was demonstrated in the metabolism of 6-cyclopropylamino guanosine to 6-hydroxy guanosine. The results indicated that the transformation rates of different prodrugs to the active form varied greatly, which were closely correlated with the configuration of nucleosides and the structure of glycosyl groups. Most importantly, D-form analogs were metabolized much faster than their L-counterparts, thus clearly pointed out that compared to guanine, modification of glycosyl part might be a better choice for the development of L-guanosine analogs for the treatment of HIV.
  • 加载中
    1. [1]

      R Vince, M Hua, J Brownell. Potent and selective activity of a new carbocyclic nucleoside analog (carbovir:NSC 614846) against human immunodeficiency virus in vitro[J]. Biochem. Biophys. Res. Commun, 1988,156:1046-1053. doi: 10.1016/S0006-291X(88)80950-1

    2. [2]

      S.M Daluge, S.S Good, M.B Faletto. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity[J]. Antimicrob. Agents Chemother, 1997,41:1082-1093.  

    3. [3]

      M.B Faletto, W.H Miller, E.P Garvey. Unique intracellular activation of the potent anti-human immunodeficiency virus agent 1592U89[J]. Antimicrob. Agents Chemother, 1997,41:1099-1107.  

    4. [4]

      P.A Furman, J Jeffrey, L.L Kiefer. Mechanism of action of 1-β-D-2, 6-diaminopurine dioxolane, a prodrug of the human immunodeficiency virus type 1 inhibitor 1-β-D-dioxolane guanosine[J]. Antimicrob. Agents Chemother, 2001,45:158-165. doi: 10.1128/AAC.45.1.158-165.2001

    5. [5]

      M Schinkmanova, I Votruba, A Holy. N6-methyl-AMP aminohydrolase activates N6-substituted purine acyclic nucleoside phosphonates[J]. Biochem. Pharmacol, 2006,71:1370-1376. doi: 10.1016/j.bcp.2006.01.013

    6. [6]

      M.A Cerny, R.P Hanzlik. Cytochrome P450-catalyzed oxidation of N-benzyl-Ncyclopropylamine generates both cyclopropanone hydrate and 3-hydroxypropionaldehyde via hydrogen abstraction, not single electron transfer[J]. J. Am. Chem. Soc, 2006,128:3346-3354. doi: 10.1021/ja054938+

    7. [7]

      K.M Roberts, J.P Jones. Anilinic N-oxides support cytochrome P450-mediated Ndealkylation through hydrogen-atom transfer[J]. Chemistry, 2010,16:8096-8107. doi: 10.1002/chem.201000185

    8. [8]

      K.Y Hostetler, D.D Richman, C.N Sridhar. Phosphatidylazidothymidine and phosphatidyl-ddC:assessment of uptake in mouse lymphoid tissues and antiviral activities in human immunodeficiency virus-infected cells and in Rauscher leukemia virus-infected mice[J]. Antimicrob. Agents Chemother, 1994,38:2792-2797. doi: 10.1128/AAC.38.12.2792

    9. [9]

      B.A Korba, H Xie, K.N Wright. Liver-targeted antiviral nucleosides:enhanced antiviral activity of phosphatidyl-dideoxyguanosine versus dideoxyguanosine in woodchuck hepatitis virus infection in vivo[J]. Hepatology, 1996,23:958-963.  

    10. [10]

      A.S Ray, B.I Hernandez-Santiago, J.S Mathew. Mechanism of anti-human immunodeficiency virus activity of beta-D-6-cyclopropylamino-2',3'-didehydro-2',3'-dideoxy-guanosine[J]. Antimicrob. Agents Chemother, 2005,49:1994-2001. doi: 10.1128/AAC.49.5.1994-2001.2005

    11. [11]

      L.J Xie, X.T Yang, D.L Pan. Synthesis and anti-HIV activity of a series of 6-modified 2',3'-dideoxyguanosine and 2',3'-didehydro-2',3'-dideoxyguanosine analogs[J]. Chin. J. Chem, 2013,31:1207-1218. doi: 10.1002/cjoc.201300440

    12. [12]

      J.F Lu, L.J Xie, M Cao. The prodrugs of L-guanosine analogs:design, synthesis and anti-HIV activity[J]. J. Chin. Pharm. Sci, 2011,20:335-341.  

    13. [13]

      Y Peng, T Cheng, L Dong. Quantification of 2'-deoxy-2'-β-fluoro-4'-azidocytidine in rat and dog plasma using liquid chromatography-quadrupole time-of-flight and liquid chromatography-triple quadrupole mass spectrometry:application to bioavailability and pharmacokinetic studies[J]. J. Pharm. Biomed. Anal, 2014,98:379-386. doi: 10.1016/j.jpba.2014.06.019

    14. [14]

      C Frieden, L.C Kurz, H.R Gilbert. Adenosine deaminase and adenylate deaminase:comparative kinetic studies with transition state and ground state analogue inhibitors[J]. Biochemistry, 1980,19:5303-5309. doi: 10.1021/bi00564a024

    15. [15]

      J.Z Wu, C.C Lin, Z Hong. Ribavirin, viramidine and adenosine-deaminase-catalysed drug activation:implication for nucleoside prodrug design[J]. J. Antimicrob. Chemother, 2003,52:543-546. doi: 10.1093/jac/dkg405

    16. [16]

      L Pei, L.J Xie, Q Lin. Studies on the adenosine deaminase-catalyzed conversion of adenosine and nucleoside prodrugs by different capillary electrophoresis modes[J]. Anal. Biochem, 2011,414:131-137. doi: 10.1016/j.ab.2011.03.014

  • 加载中
    1. [1]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    2. [2]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    3. [3]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    4. [4]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    5. [5]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    6. [6]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    7. [7]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    8. [8]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    9. [9]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    10. [10]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    11. [11]

      Sixin AiWenxiu LiHuayong ZhuYang WanWeiying Lin . Viscosity-responsive signal amplification dual-modal probe triggered by cysteine/homocysteine for monitoring diabetic liver damages and repair processes. Chinese Chemical Letters, 2025, 36(3): 109904-. doi: 10.1016/j.cclet.2024.109904

    12. [12]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    13. [13]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    14. [14]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    15. [15]

      . . University Chemistry, 2024, 39(6): 0-0.

    16. [16]

      . 第41卷第6期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(6): -.

    17. [17]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    18. [18]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    19. [19]

      Qijie GongJian SongYihui SongKai TangPanpan YangXiao WangMin ZhaoLiang OuyangLi RaoBin YuPeng ZhanSaiyang ZhangXiaojin Zhang . New techniques and strategies in drug discovery (2020–2024 update). Chinese Chemical Letters, 2025, 36(3): 110456-. doi: 10.1016/j.cclet.2024.110456

    20. [20]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

Metrics
  • PDF Downloads(0)
  • Abstract views(770)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return