Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks
- Corresponding author: Cheng Wang, blocks.chengwang@whu.edu.cn
Citation:
Hongmin Wang, Huimin Ding, Xiangshi Meng, Cheng Wang. Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks[J]. Chinese Chemical Letters,
;2016, 27(8): 1376-1382.
doi:
10.1016/j.cclet.2016.05.020
S.Y. Ding, W. Wang. Covalent organic frameworks (COFs): from design to applications[J]. Chem. Soc. Rev., 2013,42:548-568. doi: 10.1039/C2CS35072F
X.M. Liu, J. Guo, X. Feng, J.H. Dong, Covalent organic frameworks materials and two-dimensional macromolecules, Bull Natl. Nat. Sci. Found. China (2014) 330-339.
W. Wang. Porous organic polymers: a new star in porous materials[J]. Acta Chim. Sinica, 2015,73:461-462. doi: 10.6023/A1506E001
S.S. Han, H. Furukawa, O.M. Yaghi, W.A. Goddard III. Covalent organic frameworks as exceptional hydrogen storage materials[J]. J. Am. Chem. Soc., 2008,130:11580-11581. doi: 10.1021/ja803247y
T.Y. Zhou, S.Q. Xu, Q. Wen, Z.F. Pang, X. Zhao. One-step construction of two different kinds of pores in a 2D covalent organic framework[J]. J. Am. Chem. Soc., 2014,136:15885-15888. doi: 10.1021/ja5092936
Z.P. Li, Y.F. Zhi, X. Feng. An azine-linked covalent organic framework: synthesis, characterization and efficient gas Storage[J]. Chem. Eur. J., 2015,21:12079-12084. doi: 10.1002/chem.v21.34
Q. Gao, L.Y. Bai, X.J. Zhang. Synthesis of microporous nitrogen-rich covalentorganic framework and its application in CO2 capture[J]. Chin. J. Chem., 2015,33:90-94. doi: 10.1002/cjoc.v33.1
Y.F. Zeng, R.Q. Zou, Y.L. Zhao. Covalent organic frameworks for CO2 capture[J]. Adv. Mater., 2016,28:2855-2873. doi: 10.1002/adma.201505004
Z.X. Kang, Y.W. Peng, Y.H. Qian. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation[J]. Chem. Mater., 2016,28:1277-1285. doi: 10.1021/acs.chemmater.5b02902
S.Y. Ding, J. Gao, Q. Wang. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. J. Am. Chem. Soc., 2011,133:19816-19822. doi: 10.1021/ja206846p
Q.R. Fang, S. Gu, J. Zheng. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis,[J]. Angew. Chem. Int. Ed, 2014,53:2878-2882. doi: 10.1002/anie.v53.11
Y.F. Xie, S.Y. Ding, J.M. Liu, W. Wang, Q.Y. Zheng. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes[J]. J. Mater. Chem. C, 2015,3:10066-10069. doi: 10.1039/C5TC02256H
G.Q. Lin, H.M. Ding, D.Q. Yuan, B.S. Wang, C. Wang. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. J. Am. Chem. Soc., 2016,138:3302-3305. doi: 10.1021/jacs.6b00652
M. Dogru, T. Bein. On the road towards electroactive covalent organic frameworks[J]. Chem. Commun., 2014,50:5531-5546. doi: 10.1039/C3CC46767H
J. Guo, Y.H. Xu, S.B. Jin. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds[J]. Nat. Commun., 2013,42736.
C.R. DeBlase, K.E. Silberstein, T.T. Truong, H. D.. Abruña, W.R. Dichtel, β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage[J]. J. Am. Chem. Soc., 2013,135:16821-16824. doi: 10.1021/ja409421d
H.P. Liao, H.M. Ding, B.J. Li, X.P. Ai, C. Wang. Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014,2:8854-8858. doi: 10.1039/c4ta00523f
C.R. DeBlase, K. Hernández-Burgos, K.E. Silberstein. Rapid and efficient redox processes within 2D covalent organic framework thin films[J]. ACS Nano, 2015,9:3178-3183. doi: 10.1021/acsnano.5b00184
B. Lukose, A. Kuc, T. Heine. The structure of layered covalent-organic frameworks[J]. Chem. Eur. J., 2011,17:2388-2392. doi: 10.1002/chem.201001290
P. Zhu, V. Meunier. Electronic properties of two-dimensional covalent organic frameworks[J]. J. Chem. Phys., 2012,137244703. doi: 10.1063/1.4772535
G.H.V. Bertrand, V.K. Michaelis, T.C. Ong, R.G. Griffin, M. Dincă. Thiophene-based covalent organic frameworks[J]. Proc. Natl. Acad. Sci. U. S. A., 2013,110:4923-4928. doi: 10.1073/pnas.1221824110
H.M. Ding, Y.H. Li, H. Hu. A tetrathiafulvalene-based electroactive covalent organic framework[J]. Chem. Eur. J., 2014,20:14614-14618. doi: 10.1002/chem.v20.45
W.L. Dong, L. Wang, H.M. Ding. Substrate orientation effect in the on-surface synthesis of tetrathiafulvalene-integrated single-layer covalent organic frameworks[J]. Langmuir, 2015,31:11755-11759. doi: 10.1021/acs.langmuir.5b02412
R. Bonnett. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy[J]. Chem. Soc. Rev., 1995,24:19-33. doi: 10.1039/cs9952400019
A. Yella, H.W. Lee, H.N. Tsao. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011,334:629-634. doi: 10.1126/science.1209688
J.R. Darwent, P. Douglas, A. Harriman, G. Porter, M.C. Richoux. Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen[J]. Coord. Chem. Rev., 1982,44:83-126. doi: 10.1016/S0010-8545(00)80518-4
P.G. Gassman, A. Ghosh, J. Almlof. Electronic effects of peripheral substituents in porphyrins: X-ray photoelectron spectroscopy and ab initio self-consistent field calculations[J]. J. Am. Chem. Soc., 1992,114:9990-10000. doi: 10.1021/ja00051a035
P. Kar, S. Sardar, E. Alarousu. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: key information from ultrafast electronic spectroscopy[J]. Chem. Eur. J., 2014,20:10475-10483. doi: 10.1002/chem.v20.33
X.X. Ma, Q.Z. Ren, Z.F. Ma. Progress of studies on metalloporphyrin compounds as electrocatalysts[J]. Chem. World, 2005,46:243-246.
M.U. Winters, E. Dahlstedt, H.E. Blades. Probing the efficiency of electron transfer through porphyrin-based molecular wires[J]. J. Am. Chem. Soc., 2007,129:4291-4297. doi: 10.1021/ja067447d
C.G. Claessens, U. Hahn, T. Torres. Phthalocyanines: from outstanding electronic properties to emerging applications[J]. Chem. Rec., 2008,8:75-97. doi: 10.1002/(ISSN)1528-0691
W. Liu, H.C. Zhang, J.Z. Jiang. Phthalocyanine & porphyrin-based molecular magnets: synthesis, structure characteristics and applications, J[J]. Chin. Rare Earth Soc., 2001,20:1-10.
F. D'Souza, G.R. Deviprasad, M.E. El-Khouly, M. Fujitsuka, O. Ito. Probing the donor-acceptor proximity on the physicochemical properties of porphyrin-fullerene dyads: "Tail-On" and "Tail-Off" binding approach[J]. J. Am. Chem. Soc., 2001,123:5277-5284. doi: 10.1021/ja010356q
M.O. Senge, M. Fazekas, E.G.A. Notaras. Nonlinear optical properties of porphyrins[J]. Adv. Mater., 2007,19:2737-2774. doi: 10.1002/(ISSN)1521-4095
J.B. Zhang, P.Y. Zhang, G.H. Chen, F. Han, X.H. Wei. Photochemical reaction between magnesium tetraphenyl porphyrin and oxygen[J]. Chin. Chem. Lett., 2008,19:1190-1192. doi: 10.1016/j.cclet.2008.07.004
S.J. Rowan, S.J. Cantrill, G.R.L. Cousins, J.K. Sanders, J.F. Stoddart. Dynamic covalent chemistry[J]. Angew. Chem. Int. Ed., 2002,41:898-952. doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R
Y.H. Jin, C. Yu, R.J. Denman, W. Zhang. Recent advances in dynamic covalent chemistry[J]. Chem. Soc. Rev., 2013,42:6634-6654. doi: 10.1039/c3cs60044k
B.L. Zhou, L. Chen. New strategies for the synthesis of covalent organic porous polymers[J]. Acta Chim. Sinica, 2015,73:487-497. doi: 10.6023/A15020090
S. Wan, F. Gándara, A. Asano. Covalent organic frameworks with high charge carrier mobility[J]. Chem. Mater., 2011,23:4094-4097. doi: 10.1021/cm201140r
X. Chen, M. Addicoat, E.Q. Jin. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity[J]. J. Am. Chem. Soc., 2015,137:3241-3247. doi: 10.1021/ja509602c
H.P. Liao, H.M. Wang, H.M. Ding. A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2016,4:7416-7421. doi: 10.1039/C6TA00483K
X. Feng, L.L. Liu, Y. Honsho. High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction[J]. Angew. Chem. Int. Ed., 2012,51:2618-2622. doi: 10.1002/anie.201106203
M. Calik, F. Auras, L.M. Salonen. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction[J]. J. Am. Chem. Soc., 2014,136:17802-17807. doi: 10.1021/ja509551m
A. Nagai, X. Chen, X. Feng. A squaraine-linked mesoporous covalent organic framework[J]. Angew. Chem. Int. Ed., 2013,52:3770-3774. doi: 10.1002/anie.201300256
E.L. Spitler, W.R. Dichtel. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks[J]. Nat. Chem., 2010,2:672-677. doi: 10.1038/nchem.695
E.L. Spitler, J.W. Colson, F.J. Uribe-Romo. Lattice expansion ofhighly oriented 2D phthalocyanine covalent organic framework films[J]. Angew. Chem. Int. Ed., 2012,51:2623-2627. doi: 10.1002/anie.201107070
X.S. Ding, L. Chen, Y. Honsho. An n-channel two-dimensional covalent organic framework[J]. J. Am. Chem. Soc., 2011,133:14510-14513. doi: 10.1021/ja2052396
H.C. Kolb, M.G. Finn, K.B. Sharpless. Click chemistry: diverse chemical function from a few good reactions[J]. Angew. Chem. Int. Ed., 2001,40:2004-2021. doi: 10.1002/(ISSN)1521-3773
H. Xu, X. Chen, J. Gao. Catalytic covalent organic frameworks via pore surface engineering[J]. Chem. Commun., 2014,50:1292-1294. doi: 10.1039/C3CC48813F
L. Chen, K. Furukawa, J. Gao. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions[J]. J. Am. Chem. Soc., 2014,136:9806-9809. doi: 10.1021/ja502692w
N. Huang, X. Chen, R. Krishna, D.L. Jiang. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization[J]. Angew. Chem. Int. Ed., 2015,54:2986-2990. doi: 10.1002/anie.201411262
V.S.P.K. Neti, X.F. Wu, S.G. Deng, L. Echegoyen. Synthesis of a phthalocyanine and porphyrin 2D covalent organic framework[J]. CrystEngComm, 2013,15:6892-6895. doi: 10.1039/c3ce40706c
V.S.P.K. Neti, X.F. Wu, M. Hosseini. Synthesis of a phthalocyanine 2D covalent organic framework[J]. CrystEngComm, 2013,15:7157-7160. doi: 10.1039/c3ce41091a
J.H. Guo, H. Zhang, Z.P. Liu, X.L. Cheng. Multiscale study of hydrogen adsorption, diffusion, and desorption on Li-doped phthalocyanine covalent organic frameworks[J]. J. Phys. Chem. C, 2012,116:15908-15917. doi: 10.1021/jp305949q
P. Srepusharawoot, E. Swatsitang, V. Amornkitbamrung, U. Pinsookd, R. Ahujag. Hydrogen adsorption of Li functionalized Covalent Organic Framework-366: an ab initio study[J]. Int. J. Hydrogen Energy, 2013,38:14276-14280. doi: 10.1016/j.ijhydene.2013.08.102
V.S.P.K. Neti, X.F. Wu, S.G. Deng, L. Echegoyen. Selective CO2 capture in an imine linked porphyrin porous polymer[J]. Polym. Chem., 2013,4:4566-4569. doi: 10.1039/c3py00798g
D.B. Shinde, S. Kandambeth, P. Pachfule, R.R. Kumar, R. Banerjee. Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores[J]. Chem. Commun., 2015,51:310-313. doi: 10.1039/C4CC07104B
S. Lin, C.S. Diercks, Y.B. Zhang. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015,349:1208-1213. doi: 10.1126/science.aac8343
X.S. Ding, X. Feng, A. Saeki. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling p-electronic functions[J]. Chem. Commun., 2012,48:8952-8954. doi: 10.1039/c2cc33929c
S.B. Jin, M. Supur, M. Addicoat. Creation ofsuperheterojunction polymers via direct polycondensation: segregated and bicontinuous donor-acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation[J]. J. Am. Chem. Soc., 2015,137:7817-7827. doi: 10.1021/jacs.5b03553
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473