Citation: Hongmin Wang, Huimin Ding, Xiangshi Meng, Cheng Wang. Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks[J]. Chinese Chemical Letters, ;2016, 27(8): 1376-1382. doi: 10.1016/j.cclet.2016.05.020 shu

Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks

  • Corresponding author: Cheng Wang, blocks.chengwang@whu.edu.cn
  • Received Date: 21 April 2016
    Revised Date: 10 May 2016
    Accepted Date: 20 May 2016
    Available Online: 27 August 2016

Figures(8)

  • Covalent organic frameworks (COFs) represent an emerging class of porous crystalline materials and have recently shown interesting applications from catalysis to optoelectronic devices. In this review, by covering most of the reported work, we summarized the research progress of two-dimensional (2D) porphyrin- and phthalocyanine-based COFs, with highlighting the synthesis of these 2D COFs via various dynamic covalent reactions and emphasizing their potential applications in different areas.
  • 加载中
    1. [1]

      S.Y. Ding, W. Wang. Covalent organic frameworks (COFs): from design to applications[J]. Chem. Soc. Rev., 2013,42:548-568. doi: 10.1039/C2CS35072F

    2. [2]

      X.M. Liu, J. Guo, X. Feng, J.H. Dong, Covalent organic frameworks materials and two-dimensional macromolecules, Bull Natl. Nat. Sci. Found. China (2014) 330-339.

    3. [3]

      W. Wang. Porous organic polymers: a new star in porous materials[J]. Acta Chim. Sinica, 2015,73:461-462. doi: 10.6023/A1506E001

    4. [4]

      S.S. Han, H. Furukawa, O.M. Yaghi, W.A. Goddard III. Covalent organic frameworks as exceptional hydrogen storage materials[J]. J. Am. Chem. Soc., 2008,130:11580-11581. doi: 10.1021/ja803247y

    5. [5]

      T.Y. Zhou, S.Q. Xu, Q. Wen, Z.F. Pang, X. Zhao. One-step construction of two different kinds of pores in a 2D covalent organic framework[J]. J. Am. Chem. Soc., 2014,136:15885-15888. doi: 10.1021/ja5092936

    6. [6]

      Z.P. Li, Y.F. Zhi, X. Feng. An azine-linked covalent organic framework: synthesis, characterization and efficient gas Storage[J]. Chem. Eur. J., 2015,21:12079-12084. doi: 10.1002/chem.v21.34

    7. [7]

      Q. Gao, L.Y. Bai, X.J. Zhang. Synthesis of microporous nitrogen-rich covalentorganic framework and its application in CO2 capture[J]. Chin. J. Chem., 2015,33:90-94. doi: 10.1002/cjoc.v33.1

    8. [8]

      Y.F. Zeng, R.Q. Zou, Y.L. Zhao. Covalent organic frameworks for CO2 capture[J]. Adv. Mater., 2016,28:2855-2873. doi: 10.1002/adma.201505004

    9. [9]

      Z.X. Kang, Y.W. Peng, Y.H. Qian. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation[J]. Chem. Mater., 2016,28:1277-1285. doi: 10.1021/acs.chemmater.5b02902

    10. [10]

      S.Y. Ding, J. Gao, Q. Wang. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. J. Am. Chem. Soc., 2011,133:19816-19822. doi: 10.1021/ja206846p

    11. [11]

      Q.R. Fang, S. Gu, J. Zheng. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis,[J]. Angew. Chem. Int. Ed, 2014,53:2878-2882. doi: 10.1002/anie.v53.11

    12. [12]

      Y.F. Xie, S.Y. Ding, J.M. Liu, W. Wang, Q.Y. Zheng. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes[J]. J. Mater. Chem. C, 2015,3:10066-10069. doi: 10.1039/C5TC02256H

    13. [13]

      G.Q. Lin, H.M. Ding, D.Q. Yuan, B.S. Wang, C. Wang. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. J. Am. Chem. Soc., 2016,138:3302-3305. doi: 10.1021/jacs.6b00652

    14. [14]

      M. Dogru, T. Bein. On the road towards electroactive covalent organic frameworks[J]. Chem. Commun., 2014,50:5531-5546. doi: 10.1039/C3CC46767H

    15. [15]

      J. Guo, Y.H. Xu, S.B. Jin. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds[J]. Nat. Commun., 2013,42736.  

    16. [16]

      C.R. DeBlase, K.E. Silberstein, T.T. Truong, H. D.. Abruña, W.R. Dichtel, β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage[J]. J. Am. Chem. Soc., 2013,135:16821-16824. doi: 10.1021/ja409421d

    17. [17]

      H.P. Liao, H.M. Ding, B.J. Li, X.P. Ai, C. Wang. Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014,2:8854-8858. doi: 10.1039/c4ta00523f

    18. [18]

      C.R. DeBlase, K. Hernández-Burgos, K.E. Silberstein. Rapid and efficient redox processes within 2D covalent organic framework thin films[J]. ACS Nano, 2015,9:3178-3183. doi: 10.1021/acsnano.5b00184

    19. [19]

      B. Lukose, A. Kuc, T. Heine. The structure of layered covalent-organic frameworks[J]. Chem. Eur. J., 2011,17:2388-2392. doi: 10.1002/chem.201001290

    20. [20]

      P. Zhu, V. Meunier. Electronic properties of two-dimensional covalent organic frameworks[J]. J. Chem. Phys., 2012,137244703. doi: 10.1063/1.4772535

    21. [21]

      G.H.V. Bertrand, V.K. Michaelis, T.C. Ong, R.G. Griffin, M. Dincă. Thiophene-based covalent organic frameworks[J]. Proc. Natl. Acad. Sci. U. S. A., 2013,110:4923-4928. doi: 10.1073/pnas.1221824110

    22. [22]

      H.M. Ding, Y.H. Li, H. Hu. A tetrathiafulvalene-based electroactive covalent organic framework[J]. Chem. Eur. J., 2014,20:14614-14618. doi: 10.1002/chem.v20.45

    23. [23]

      W.L. Dong, L. Wang, H.M. Ding. Substrate orientation effect in the on-surface synthesis of tetrathiafulvalene-integrated single-layer covalent organic frameworks[J]. Langmuir, 2015,31:11755-11759. doi: 10.1021/acs.langmuir.5b02412

    24. [24]

      R. Bonnett. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy[J]. Chem. Soc. Rev., 1995,24:19-33. doi: 10.1039/cs9952400019

    25. [25]

      A. Yella, H.W. Lee, H.N. Tsao. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011,334:629-634. doi: 10.1126/science.1209688

    26. [26]

      J.R. Darwent, P. Douglas, A. Harriman, G. Porter, M.C. Richoux. Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen[J]. Coord. Chem. Rev., 1982,44:83-126. doi: 10.1016/S0010-8545(00)80518-4

    27. [27]

      P.G. Gassman, A. Ghosh, J. Almlof. Electronic effects of peripheral substituents in porphyrins: X-ray photoelectron spectroscopy and ab initio self-consistent field calculations[J]. J. Am. Chem. Soc., 1992,114:9990-10000. doi: 10.1021/ja00051a035

    28. [28]

      P. Kar, S. Sardar, E. Alarousu. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: key information from ultrafast electronic spectroscopy[J]. Chem. Eur. J., 2014,20:10475-10483. doi: 10.1002/chem.v20.33

    29. [29]

      X.X. Ma, Q.Z. Ren, Z.F. Ma. Progress of studies on metalloporphyrin compounds as electrocatalysts[J]. Chem. World, 2005,46:243-246.  

    30. [30]

      M.U. Winters, E. Dahlstedt, H.E. Blades. Probing the efficiency of electron transfer through porphyrin-based molecular wires[J]. J. Am. Chem. Soc., 2007,129:4291-4297. doi: 10.1021/ja067447d

    31. [31]

      C.G. Claessens, U. Hahn, T. Torres. Phthalocyanines: from outstanding electronic properties to emerging applications[J]. Chem. Rec., 2008,8:75-97. doi: 10.1002/(ISSN)1528-0691

    32. [32]

      W. Liu, H.C. Zhang, J.Z. Jiang. Phthalocyanine & porphyrin-based molecular magnets: synthesis, structure characteristics and applications, J[J]. Chin. Rare Earth Soc., 2001,20:1-10.

    33. [33]

      F. D'Souza, G.R. Deviprasad, M.E. El-Khouly, M. Fujitsuka, O. Ito. Probing the donor-acceptor proximity on the physicochemical properties of porphyrin-fullerene dyads: "Tail-On" and "Tail-Off" binding approach[J]. J. Am. Chem. Soc., 2001,123:5277-5284. doi: 10.1021/ja010356q

    34. [34]

      M.O. Senge, M. Fazekas, E.G.A. Notaras. Nonlinear optical properties of porphyrins[J]. Adv. Mater., 2007,19:2737-2774. doi: 10.1002/(ISSN)1521-4095

    35. [35]

      J.B. Zhang, P.Y. Zhang, G.H. Chen, F. Han, X.H. Wei. Photochemical reaction between magnesium tetraphenyl porphyrin and oxygen[J]. Chin. Chem. Lett., 2008,19:1190-1192. doi: 10.1016/j.cclet.2008.07.004

    36. [36]

      S.J. Rowan, S.J. Cantrill, G.R.L. Cousins, J.K. Sanders, J.F. Stoddart. Dynamic covalent chemistry[J]. Angew. Chem. Int. Ed., 2002,41:898-952. doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R

    37. [37]

      Y.H. Jin, C. Yu, R.J. Denman, W. Zhang. Recent advances in dynamic covalent chemistry[J]. Chem. Soc. Rev., 2013,42:6634-6654. doi: 10.1039/c3cs60044k

    38. [38]

      B.L. Zhou, L. Chen. New strategies for the synthesis of covalent organic porous polymers[J]. Acta Chim. Sinica, 2015,73:487-497. doi: 10.6023/A15020090

    39. [39]

      S. Wan, F. Gándara, A. Asano. Covalent organic frameworks with high charge carrier mobility[J]. Chem. Mater., 2011,23:4094-4097. doi: 10.1021/cm201140r

    40. [40]

      X. Chen, M. Addicoat, E.Q. Jin. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity[J]. J. Am. Chem. Soc., 2015,137:3241-3247. doi: 10.1021/ja509602c

    41. [41]

      H.P. Liao, H.M. Wang, H.M. Ding. A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium-sulfur batteries[J]. J. Mater. Chem. A, 2016,4:7416-7421. doi: 10.1039/C6TA00483K

    42. [42]

      X. Feng, L.L. Liu, Y. Honsho. High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction[J]. Angew. Chem. Int. Ed., 2012,51:2618-2622. doi: 10.1002/anie.201106203

    43. [43]

      M. Calik, F. Auras, L.M. Salonen. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction[J]. J. Am. Chem. Soc., 2014,136:17802-17807. doi: 10.1021/ja509551m

    44. [44]

      A. Nagai, X. Chen, X. Feng. A squaraine-linked mesoporous covalent organic framework[J]. Angew. Chem. Int. Ed., 2013,52:3770-3774. doi: 10.1002/anie.201300256

    45. [45]

      E.L. Spitler, W.R. Dichtel. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks[J]. Nat. Chem., 2010,2:672-677. doi: 10.1038/nchem.695

    46. [46]

      E.L. Spitler, J.W. Colson, F.J. Uribe-Romo. Lattice expansion ofhighly oriented 2D phthalocyanine covalent organic framework films[J]. Angew. Chem. Int. Ed., 2012,51:2623-2627. doi: 10.1002/anie.201107070

    47. [47]

      X.S. Ding, L. Chen, Y. Honsho. An n-channel two-dimensional covalent organic framework[J]. J. Am. Chem. Soc., 2011,133:14510-14513. doi: 10.1021/ja2052396

    48. [48]

      H.C. Kolb, M.G. Finn, K.B. Sharpless. Click chemistry: diverse chemical function from a few good reactions[J]. Angew. Chem. Int. Ed., 2001,40:2004-2021. doi: 10.1002/(ISSN)1521-3773

    49. [49]

      H. Xu, X. Chen, J. Gao. Catalytic covalent organic frameworks via pore surface engineering[J]. Chem. Commun., 2014,50:1292-1294. doi: 10.1039/C3CC48813F

    50. [50]

      L. Chen, K. Furukawa, J. Gao. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions[J]. J. Am. Chem. Soc., 2014,136:9806-9809. doi: 10.1021/ja502692w

    51. [51]

      N. Huang, X. Chen, R. Krishna, D.L. Jiang. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization[J]. Angew. Chem. Int. Ed., 2015,54:2986-2990. doi: 10.1002/anie.201411262

    52. [52]

      V.S.P.K. Neti, X.F. Wu, S.G. Deng, L. Echegoyen. Synthesis of a phthalocyanine and porphyrin 2D covalent organic framework[J]. CrystEngComm, 2013,15:6892-6895. doi: 10.1039/c3ce40706c

    53. [53]

      V.S.P.K. Neti, X.F. Wu, M. Hosseini. Synthesis of a phthalocyanine 2D covalent organic framework[J]. CrystEngComm, 2013,15:7157-7160. doi: 10.1039/c3ce41091a

    54. [54]

      J.H. Guo, H. Zhang, Z.P. Liu, X.L. Cheng. Multiscale study of hydrogen adsorption, diffusion, and desorption on Li-doped phthalocyanine covalent organic frameworks[J]. J. Phys. Chem. C, 2012,116:15908-15917. doi: 10.1021/jp305949q

    55. [55]

      P. Srepusharawoot, E. Swatsitang, V. Amornkitbamrung, U. Pinsookd, R. Ahujag. Hydrogen adsorption of Li functionalized Covalent Organic Framework-366: an ab initio study[J]. Int. J. Hydrogen Energy, 2013,38:14276-14280. doi: 10.1016/j.ijhydene.2013.08.102

    56. [56]

      V.S.P.K. Neti, X.F. Wu, S.G. Deng, L. Echegoyen. Selective CO2 capture in an imine linked porphyrin porous polymer[J]. Polym. Chem., 2013,4:4566-4569. doi: 10.1039/c3py00798g

    57. [57]

      D.B. Shinde, S. Kandambeth, P. Pachfule, R.R. Kumar, R. Banerjee. Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores[J]. Chem. Commun., 2015,51:310-313. doi: 10.1039/C4CC07104B

    58. [58]

      S. Lin, C.S. Diercks, Y.B. Zhang. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015,349:1208-1213. doi: 10.1126/science.aac8343

    59. [59]

      X.S. Ding, X. Feng, A. Saeki. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling p-electronic functions[J]. Chem. Commun., 2012,48:8952-8954. doi: 10.1039/c2cc33929c

    60. [60]

      S.B. Jin, M. Supur, M. Addicoat. Creation ofsuperheterojunction polymers via direct polycondensation: segregated and bicontinuous donor-acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation[J]. J. Am. Chem. Soc., 2015,137:7817-7827. doi: 10.1021/jacs.5b03553

  • 加载中
    1. [1]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    2. [2]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    3. [3]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    4. [4]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    5. [5]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    6. [6]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    7. [7]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    8. [8]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    9. [9]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    10. [10]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    11. [11]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    12. [12]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    13. [13]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    14. [14]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    15. [15]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    16. [16]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    17. [17]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    18. [18]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    19. [19]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    20. [20]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

Metrics
  • PDF Downloads(45)
  • Abstract views(1586)
  • HTML views(402)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return