Citation: Xian-Hua Meng, Zhi-Bo Jiang, Cheng-Gen Zhu, Qing-Lan Guo, Cheng-Bo Xu, Jian-Gong Shi. Napelline-type C20-diterpenoid alkaloid iminiums from an aqueous extract of “fu zi”: Solvent-/base-/acid-dependent transformation and equilibration between alcohol iminium and aza acetal forms[J]. Chinese Chemical Letters, ;2016, 27(7): 993-1003. doi: 10.1016/j.cclet.2016.05.013 shu

Napelline-type C20-diterpenoid alkaloid iminiums from an aqueous extract of “fu zi”: Solvent-/base-/acid-dependent transformation and equilibration between alcohol iminium and aza acetal forms

  • Corresponding author: Jian-Gong Shi, shijg@imm.ac.cn
  • Received Date: 3 May 2016
    Revised Date: 15 May 2016
    Accepted Date: 18 May 2016
    Available Online: 27 July 2016

Figures(11)

  • Three new napelline-type C20-diterpenoid alkaloids, named aconicarmichinium A and B trifluoroacetates (1 and 2) and aconicarmichinium C chloride (3), were isolated from an aqueous extract of “fu zi”, the lateral roots of Aconitum carmichaelii. Their structures were elucidated by extensive spectroscopic data analysis. Compounds 1-3 represent the first examples of napelline-type C20-diterpenoid alkaloid alcohol iminiums, of which the structures were fully characterized. In addition, transformation and equilibration between the alcohol iminiums (1-3) and the aza acetals 1a-3a were investigated by measurements of the NMR spectra in protic and aprotic deuteriumsolvents including alkali pyridine-d5, along with evaporation under reduced pressure and gradual additions of TFA, AcOH, and HCl. The results demonstrated that the transformation and equilibration were solvent-, base-, and acid-dependent. Especially, in aqueous biological fluid, these C20-diterpenoid alkaloids would more likely exist as the alcohol iminiums accompanied by anion counterparts in biosystems to increase their solubility, bioavailability, transportations, and functions. The absolute configurations of 1-3 were confirmed by X-ray crystallographic analysis of 2a.
  • 加载中
    1. [1]

      F.P. Wang, X.T. Liang. Chemistry of the diterpenoid alkaloids, in: G.A. Cordell (Ed.), The Alkaloids: Chemistry and Pharmacology, Academic Press, New York., 1992, pp., 151-247.

    2. [2]

      F.P. Wang, X.T. Liang. C20-diterpenoid alkaloids, in: G.A. Cordell (Ed.), The Alkaloids: Chemistry and Biology, Elsevier Science, New York., 2002, pp., 1-280.

    3. [3]

      F.P. Wang, Q.H. Chen, The C19-diterpenoid alkaloids, in: G.A. Cordell (Ed.), The Alkaloids: Chemistry and Biology, Elsevier Science, New York., 2010, pp., 1-577.

    4. [4]

      F.P. Wang, Q.H. Chen, X.T. Liang, The C18-diterpenoid alkaloids, in: G.A. Cordell (Ed.), The Alkaloids: Chemistry and Biology, Elsevier Science, New York., 2009, pp., 1-78.

    5. [5]

      F.P. Wang, Q.H. Chen, X.Y. Liu. Diterpenoid alkaloids[J]. Nat. Prod. Rep., 2010,27:529-570. doi: 10.1039/b916679c

    6. [6]

      S.W. Pelletier, L.H. Keith, P.C. Parthasarathy. The structures of condelphine, isotalatizidine, and talatizidine[J]. J. Am. Chem. Soc., 1967,89:4146-4157. doi: 10.1021/ja00992a033

    7. [7]

      S.W. Pelletier, Z. Djarmati, S. Lajsic, W.H. De. Camp. Alkaloids of Delphinium staphisagria. The structure and stereochemistry of delphisine, neoline, chasmanine, and homochasmanine[J]. J. Am. Chem. Soc., 1976,98:2617-2625. doi: 10.1021/ja00425a035

    8. [8]

      X.X. Liang, D.L. Chen, F.P. Wang. Two new C19-diterpenoid alkaloids from Delphinium davidii Franch[J]. Chin. Chem. Lett., 2006,17:1473-1476.

    9. [9]

      L. Wang, J.Y. Ding, X.X. Liu. Identification of aminoalcohol-diterpenoid alkaloids in Aconiti Lateralis Radix Praeparata and study of their cardiac effects[J]. Acta Pharm. Sin., 2014,49:1699-1704.  

    10. [10]

      C. Levrier, M.C. Sadowski, C.C. Nelson, R.A. Davis. Cytotoxic C20 diterpenoid alkaloids from the Australian endemic rainforest plant Anopterus macleayanu[J]. J. Nat. Prod., 2015,78:2908-2916. doi: 10.1021/acs.jnatprod.5b00509

    11. [11]

      J. Dostá l. Two faces of alkaloids[J]. J. Chem. Educ., 2000,77993. doi: 10.1021/ed077p993

    12. [12]

      R.R. Jones, R.J. Harkrader, G.L. Southard. The effects of pH on sanguinarine iminium ion form[J]. J. Nat. Prod., 1986,49:1109-1111. doi: 10.1021/np50048a025

    13. [13]

      A. Sen, M. Maiti. Interaction of sanguinarine iminium and alkanolamine form with calf thymus DNA[J]. Biochem. Pharmacol., 1994,48:2097-2102. doi: 10.1016/0006-2952(94)90510-X

    14. [14]

      J. Dostá l, H. Bochořáková, E. Tá borská, J. Slavík. Structure of sanguinarine base[J]. J. Nat. Prod., 1996,59:599-602. doi: 10.1021/np960356h

    15. [15]

      M. Janovská, M. Kubala, V. Simá nek, J. Ulrichová. Fluorescence of sanguinarine: spectral changes on interaction with amino acids[J]. Phys. Chem. Chem. Phys., 2010,12:11335-11341. doi: 10.1039/b925828k

    16. [16]

      I. Bessi, C. Bazzicalupi, C. Richter. Spectroscopic, molecular modeling, and NMR-spectroscopic investigation of the binding mode of the natural alkaloids berberine and sanguinarine to human telomeric γ-quadruplex DNA[J]. ACS Chem. Biol, 2012,7:1109-1119. doi: 10.1021/cb300096g

    17. [17]

      S. Hazra, G. Suresh Kumar. Structural and thermodynamic studies on the interaction of iminium and alkanolamine forms of sanguinarine with hemoglobin[J]. J. Phys. Chem. B, 2014,118:3771-3784. doi: 10.1021/jp409764z

    18. [18]

      C. Jash, P.V. Payghan, N. Ghoshal, G.S. Kumar. Binding of the iminium and alkanolamine forms of sanguinarine to lysozyme: spectroscopic analysis, thermodynamics, and molecular modeling studies[J]. J. Phys. Chem. B, 2014,118:13077-13091. doi: 10.1021/jp5068704

    19. [19]

      J. Dostá l, E. Táborská, J. Slavík M. Potá ček, E. de H of fmann. Structure of chelerythrine base[J]. J. Nat. Prod., 1995,58:723-729. doi: 10.1021/np50119a010

    20. [20]

      T. Nakanishi, M. Suzuki, A. Saimoto, T. Kabasawa. Structural considerations of NK109, an antitumor benzo[J]. J. Nat. Prod., 1999,62:864-867. doi: 10.1021/np990005d

    21. [21]

      Jiangsu New Medical College, A Dictionary of Traditional Chinese Medicine, 228-232, Shanghai Science and Technology Publishing House, Shanghai. 1995, pp., 1191-1194.

    22. [22]

      Y. Chen, Y.L. Chu, J.H. Chu. The alkaloids of the Chinese drugs. Aconitum spp. IX. Alkaloids from chuan-wu and fu-tzu. Aconitum carmichaeli Debx[J]. Acta Pharm. Sin., 1965,12:435-439.  

    23. [23]

      J. Iwasa, S. Naruto. Alkaloids from Aconitum carmichaeli DEBX[J]. J. Pharm. Soc. Jpn., 1966,86:585-590.

    24. [24]

      C. Konno, M. Shirasaka, H. Hikino. Structure of senbusine A. B and C, diterpenie alkaloids of Aconitum carmichaeli roots from China[J]. J. Nat. Prod., 1982,45:128-133. doi: 10.1021/np50020a003

    25. [25]

      W.D. Zhang, G.Y. Han, H.Q. Liang. Studies on the alkaloid constituents of Jiangyou Fu-zi Aconitum carmichaeli from Sichuan[J]. Acta Pharm. Sin., 1992,27:670-673.  

    26. [26]

      X.K. Wang, T.F. Zhao, S. Lai. A new N-formyl C19-diterpenoid alkaloids, aldohypaconitine, from cultivated Aconitum carmichaeli Debx[J]. Chin. Chem. Lett., 1994,5:671-672.

    27. [27]

      S.H. Shim, S.Y. Lee, J.S. Kim, K.H. Son, S.S. Kang.. Norditerpenoid alkaloids and other components from the processed tubers of Aconitum carmichaeli[J]. Arch. Pharm. Res, 2005,28:1239-1243. doi: 10.1007/BF02978206

    28. [28]

      J. Xiong, K. Gu, N.H. Tan.. Diterpenoid alkaloids from the processed roots of Aconitum carmichaeli,[J]. Nat. Prod. Res. Dev, 2008,20:440-443,465.  

    29. [29]

      X.X. Liu, X.X. Jian, X.F. Cai. Cardioactive C19-diterpenoid alkaloids from the lateral roots of Aconitumcarmichaeli “Fu Zi”[J]. Chem. Pharm. Bull., 2012,60:144-149. doi: 10.1248/cpb.60.144

    30. [30]

      F. Gao, Y.Y. Li, D. Wang, X. Huang, Q. Liu. Diterpenoid alkaloids from the Chinese traditionalherbal “Fuzi”andtheir cytotoxicactivity[J]. Molecules, 2012,17:5187-5194. doi: 10.3390/molecules17055187

    31. [31]

      J. Zhang, G.B. Sun, Q.F. Lei. Chemical constituents of lateral roots of Aconitum carmichaelii Debx[J]. Acta Pharm. Sin., 2014,49:1150-1154.  

    32. [32]

      G.H. Zhou, L.Y. Tang, X.D. Zhou. A review on phytochemistry and pharmacological activities of the processed lateral root of Aconitum carmichaelii Debeaux[J]. J. Ethnopharm., 2015,160:173-193. doi: 10.1016/j.jep.2014.11.043

    33. [33]

      W.D. Xu, Y. Tian, Q.L. Guo, Y.C. Yang, J.G. Shi. Secoeuphoractin, a minor diterpenoid with a new skeleton fromEuphorbiamicractina[J]. Chin. Chem. Lett., 2014,25:1531-1534. doi: 10.1016/j.cclet.2014.09.012

    34. [34]

      Y. Tian, Q.L. Guo, W.D. Xu. A minor diterpenoid with a new, 6/5/7/3 fusedring skeleton from Euphorbia micractina[J]. Org. Lett., 2014,16:3950-3953. doi: 10.1021/ol501760h

    35. [35]

      F. Wang, Y.P. Jiang, X.L. Wang. Aromatic glycosides from the flower buds of Lonicera japonica[J]. J. Asian Nat. Prod. Res., 2013,15:492-501. doi: 10.1080/10286020.2013.785531

    36. [36]

      W.X. Song, Y.C. Yang, J.G. Shi. Two new β-hydroxy amino acid-coupled secoiridoids from the flower buds of Lonicera japonica: isolation, structure elucidation, semisynthesis, and biological activities[J]. Chin. Chem. Lett., 2014,25:1215-1219. doi: 10.1016/j.cclet.2014.05.037

    37. [37]

      Z.B. Jiang, W.X. Song, J.G. Shi. Two new, 1-(60-O-acyl-β-D-glucopyranosyl) pyridinium-3-carboxylates from the flower buds of Lonicera japonica[J]. Chin. Chem. Lett., 2015,26:69-72. doi: 10.1016/j.cclet.2014.10.011

    38. [38]

      Y. Yu, Z.B. Jiang, W.X. Song. Glucosylated caffeoylquinic acid derivatives from the flower buds of Lonicera japonica[J]. Acta Pharm. Sin. B, 2015,5:210-214. doi: 10.1016/j.apsb.2015.01.012

    39. [39]

      X.L. Wang, M.H. Chen, F. Wang. Chemical consitituents from root of Isatis indigotica[J]. Chin. J. Chin. Mater. Med., 2013,38:1172-1182.  

    40. [40]

      Y.F. Liu, M.H. Chen, X.L. Wang. Antiviral enantiomers of a bisindole alkaloid with a new carbon skeleton from the roots of Isatis indigotica[J]. Chin. Chem. Lett., 2015,26:931-936. doi: 10.1016/j.cclet.2015.05.052

    41. [41]

      Y.F. Liu, M.H. Chen, Q.L. Guo. Antiviral glycosidic bisindole alkaloids from the roots of Isatis indigotica[J]. J. Asian Nat. Prod. Res., 2015,17:689-704. doi: 10.1080/10286020.2015.1055729

    42. [42]

      Y.F. Liu, M.H. Chen, S. Lin. Indole alkaloid glucosides from the roots of Isatis indigotica[J]. J. Asian Nat. Prod. Res., 2016,18:1-12. doi: 10.1080/10286020.2015.1117452

    43. [43]

      Y.F. Liu, X.L. Wang, M.H. Chen. Three pairs of alkaloid enantiomers from the root of Isatis indigotica[J]. Acta Pharm. Sin. B, 2016,6:141-147. doi: 10.1016/j.apsb.2016.01.003

    44. [44]

      M.H. Chen, S. Lin, Y.N. Wang. Antiviral stereoisomers of, 3, 5-bis (2-hydroxybut-3-en-1-yl)-1, 2, 4-thiadiazole from the roots Isatis indigotica[J]. Chin. Chem. Lett., 2016,27:643-648. doi: 10.1016/j.cclet.2016.01.042

    45. [45]

      Y.P. Jiang, Y.F. Liu, Q.L. Guo. Acetylenes and fatty acids from Codonopsis pilosula[J]. Acta Pharm. Sin. B, 2015,5:215-222. doi: 10.1016/j.apsb.2015.03.005

    46. [46]

      Y.P. Jiang, Y.F. Liu, Q.L. Guo. C14-Polyacetylene glucosides from Codonopsis pilosula[J]. J. Asian Nat. Prod. Res., 2015,17:601-614. doi: 10.1080/10286020.2015.1041932

    47. [47]

      Y.P. Jiang, Q.L. Guo, Y.F. Liu, J .G. Shi, Codonopiloneolignanin A, a polycyclic neolignan with a new carbon skeleton from the roots of Codonopsis pilosula[J]. Chin. Chem. Lett., 2016,26:55-58.  

    48. [48]

      Y.P. Jiang, Y.F. Liu, Q.L. Guo. Sesquiterpene glycosides from the roots of Codonopsis pilosula[J]. Acta Pharm. Sin. B, 2016,6:46-54. doi: 10.1016/j.apsb.2015.09.007

    49. [49]

      Q.L. Guo, Y.N. Wang, S. Lin. , 4-Hydroxybenzyl-substituted amino acid derivatives from Gastrodia elata,[J]. Acta Pharm. Sin. B, 2015,5:350-357. doi: 10.1016/j.apsb.2015.02.002

    50. [50]

      Q.L. Guo, Y.N. Wang, C.G. Zhu. 4-Hydroxybenzyl-substituted glutathione derivatives from Gastrodia elata[J]. J. Asian Nat. Prod. Res, 2015,17:439-454. doi: 10.1080/10286020.2015.1040000

    51. [51]

      B.Y. Jiang, S. Lin, C.G. Zhu. Diterpenoid alkaloids from the lateral root of Aconitum carmichaelii[J]. J. Nat. Prod., 2012,75:1145-1159. doi: 10.1021/np300225t

    52. [52]

      Z.B. Jiang, B.Y. Jiang, C.G. Zhu. Aromatic acid derivatives from the lateral roots of Aconitum carmichaelii[J]. J. Asian Nat. Prod. Res., 2014,16:891-900. doi: 10.1080/10286020.2014.939585

    53. [53]

      Z.B. Jiang, X.H. Meng, B.Y. Jiang. Two 2-(quinonylcarboxamino) benzoates from the lateral roots of Aconitum carmichaelii[J]. Chin. Chem. Lett., 2010,26:653-656.  

    54. [54]

      S.W. Pelletier, N.V. Mody. Developments in the chemistry of diterpenoid alkaloids[J]. J. Nat. Prod., 1980,43:41-71. doi: 10.1021/np50007a003

    55. [55]

      M.S. Yunusov, Y.V. Rashkes, S.Y. Yunusov, A .S. Samatov. Mass spectra of alkaloids of the type of songorine: structure of songoramine[J]. Chem. Nat. Compd., 1970,695. doi: 10.1007/BF00564168

    56. [56]

      G.M. Sheldrick, SHELXS-97. Program for Crystal Structure Solution. University of Gö ttingen, Germany., 1997.

    57. [57]

      J. Chen. Chemical constituent from radix Aconite Lateralis[J]. Res. Pract. Chin. Med., 2013,27:33-35.  

    58. [58]

      Z.G. Chen, A.N. Lao, H.C. Wang, S .H. Studies on the active principles from Aconitum flavum Hand-Mazz. The structures of five new deterpenoid alkaloids[J]. Heterocycles, 1987,26:1455-1460. doi: 10.3987/R-1987-06-1455

    59. [59]

      J. Qu, L. Fang, X.D. Ren. Bisindole alkaloids with neural anti-inflammatory activity from Gelsemium elegans[J]. J. Nat. Prod., 2013,76:2203-2209. doi: 10.1021/np4005536

    60. [60]

      W.Y. He, R.M. Gao, X.Q. Li, J.D. Jiang, Y.H. Li. In vitro anti-influenza virus activity of, 10 traditional Chinese medicines[J]. Acta Pharm. Sin, 2010,45:395-398.  

    61. [61]

      Z.T. Zhang, L. Wang, Q.F. Chen. Revisions of the diterpenoid alkaloids reported in a JNP paper (2012, 75, 1145-1159)[J]. Tetrahedron, 2013,69:5859-5866. doi: 10.1016/j.tet.2013.05.029

    62. [62]

      F.P. Wang, D.L. Chen, H.Y. Deng. Further revisions on the diterpenoid alkaloids reported in a JNP paper (2012, 75, 1145-1159)[J]. Tetrahedron, 2014,70:2582-2590. doi: 10.1016/j.tet.2014.01.066

  • 加载中
    1. [1]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    2. [2]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    3. [3]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    4. [4]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    5. [5]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    6. [6]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    7. [7]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    8. [8]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    9. [9]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    10. [10]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    11. [11]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    12. [12]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    13. [13]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    14. [14]

      Lu-Lu HeLan-Tu XiongXin WangYu-Zhen LiJia-Bao LiYu ShiXin DengZi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044

    15. [15]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    16. [16]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    17. [17]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    18. [18]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

Metrics
  • PDF Downloads(6)
  • Abstract views(914)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return