Citation: Jin-Xue Dong, Hao-Li Zhang. Azulene-based organic functional molecules for optoelectronics[J]. Chinese Chemical Letters, ;2016, 27(8): 1097-1104. doi: 10.1016/j.cclet.2016.05.005 shu

Azulene-based organic functional molecules for optoelectronics


  • Author Bio: Jin-Xue Dong was born in 1989. She obtained a bachelor's degree from Shaanxi Normal University. Since 2013, she has been studying in Prof. Hao-Li Zhang's group for a master's degree. Her research focuses on the design and preparation of π-extended molecules for optoelectronic materials.

  • Corresponding author: Hao-Li Zhang, Haoli.zhang@lzu.edu.cn
  • Received Date: 16 March 2016
    Revised Date: 14 April 2016
    Accepted Date: 19 April 2016
    Available Online: 11 August 2016

Figures(7)

  • Design and synthesis of new organic functional materials with improved performance or novel properties are of great importance in the field of optoelectronics. Azulene, as a non-alternant aromatic hydrocarbon, has attracted rising attention in the last few years. Different from most common aromatic hydrocarbons, azulene has unique characteristics, including large dipole moment, small gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). However, the design and synthesis of azulene-based functional materials are still facing several challenges. This review focuses on the recent development of organic functional materials employing azulene unit. The synthesis of various functionalized azulene derivatives is summarized and their applications in optoelectronics are discussed, with particular attention to the fields including nonlinear optics (NLO), organic field-effect transistors (OFETs), solar cells, and molecular devices.
  • 加载中
    1. [1]

      A.G. Anderson, B.M. Steckler. Azulene. VIII. A study of the visible absorption spectra and dipole moments of some 1- and 1,3-substituted azulenes[J]. J. Am. Chem. Soc., 1959,81:4941-4946. doi: 10.1021/ja01527a046

    2. [2]

      A.E. Sherndal. On the blue hydrocarbon occurring in some essential oils[J]. J. Am. Chem. Soc., 1915,37:167-171. doi: 10.1021/ja02270a016

    3. [3]

      D.M. Lemal, G.D. Goldman. Synthesis of azulene, a blue hydrocarbon[J]. J. Chem. Educ., 1988,65:923-925. doi: 10.1021/ed065p923

    4. [4]

      E. Puodziukynaite, H.W. Wang, J. Lawrence. Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication[J]. J. Am. Chem. Soc., 2014,136:11043-11049. doi: 10.1021/ja504670k

    5. [5]

      H. Korichi, F. Zouchoune, S.M. Zendaoui, B. Zouchoune, J.Y. Saillard. The coordination chemistry of azulene: a comprehensive DFT investigation[J]. Organometallics, 2010,29:1693-1706. doi: 10.1021/om901089z

    6. [6]

      S.V. Shevyakov, H.R. Li, R. Muthyala. Orbital control of the color and excited state properties of formylated and fluorinated derivatives of azulene[J]. J. Phys. Chem. A, 2003,107:3295-3299. doi: 10.1021/jp021605f

    7. [7]

      M. Myahkostupov, C.V. Pagba, L. Gundlach, P. Piotrowiak. Vibrational state dependence of interfacial electron transfer: hot electron injection from the S1 state of azulene into TiO2 nanoparticles[J]. J. Phys. Chem. C, 2013,117:20485-20493. doi: 10.1021/jp406662n

    8. [8]

      J.P. Heritage, A. Penzkofer. Relaxation dynamics of the first excited electronic singlet state of azulene in solution[J]. Chem. Phys. Lett., 1976,44:76-81. doi: 10.1016/0009-2614(76)80413-7

    9. [9]

      M. Kasha. Characterization of electronic transitions in complex molecules[J]. Discuss. Faraday Soc., 1950,9:14-19. doi: 10.1039/df9500900014

    10. [10]

      T. Itoh. Fluorescence and phosphorescence from higher excited states of organic molecules[J]. Chem. Rev., 2012,112:4541-4568. doi: 10.1021/cr200166m

    11. [11]

      L.T. Scott, C.M. Adams. Quinones of azulene. 4. Synthesis and characterization of the parent 1, 5- and 1,7-quinones[J]. J. Am. Chem. Soc., 1984,106:4857-4861. doi: 10.1021/ja00329a037

    12. [12]

      Y. Sugihara, T. Yagi, I. Murata, A. Imamura. 1-Phenylthieno[3, 4-d]borepin: a new 10.pi. electron system isoelectronic with azulene[J]. J. Am. Chem. Soc., 1992,114:1479-1481. doi: 10.1021/ja00030a052

    13. [13]

      B.C. Hong, Y.F. Jiang, E.S. Kumar. Microwave-assisted 6+4-cycloaddition of fulvenes and alpha-pyrones to azulene-indoles: facile syntheses of novel antineoplastic agents[J]. Bioorg. Med. Chem. Lett., 2001,11:1981-1984. doi: 10.1016/S0960-894X(01)00349-3

    14. [14]

      E.H. Ghazvini Zadeh, A.W. Woodward, D. Richardson, M.V. Bondar, K.D. Belfield. Stimuli-responsive cyclopenta[ef]heptalenes: synthesis and optical properties[J]. Eur. J. Org. Chem., 2015:2271-2276.  

    15. [15]

      A. Muranaka, M. Yonehara, M. Uchiyama. Azulenocyanine: a new family of phthalocyanines with intense near-IR absorption[J]. J. Am. Chem. Soc., 2010,132:7844-7845. doi: 10.1021/ja101818g

    16. [16]

      R.S. Muthyala, R.S.H. Liu. Synthesis of fluorinated azulenes[J]. J. Fluorine Chem., 1998,89:173-175. doi: 10.1016/S0022-1139(98)00139-0

    17. [17]

      H.Q. Do, O. Daugulis. Copper-catalyzed cyanation of heterocycle carbon hydrohydrogen bonds[J]. Org. Lett., 2010,12:2517-2519. doi: 10.1021/ol100772u

    18. [18]

      G. Dyker, S. Borowski, J. Heiermann. First intermolecular palladium catalyzed arylation of an unfunctionalized aromatic hydrocarbon[J]. J. Organomet. Chem., 2000,606:108-111. doi: 10.1016/S0022-328X(00)00224-2

    19. [19]

      K. Kurotobi, M. Miyauchi, K. Takakura, T. Murafuji, Y. Sugihara. Direct introduction of a boryl substituent into the 2-position of azulene: application of the Miyaura and Smith methods to azulene[J]. Eur. J. Org. Chem., 2003:3663-3665.  

    20. [20]

      S. Ito, M. Ueda, R. Sekiguchi, J. Kawakami. Efficient synthesis and redox behavior of a series of 6-alkyl-2-phenylazulenes[J]. Tetrahedron, 2013,69:4259-4269. doi: 10.1016/j.tet.2013.03.084

    21. [21]

      K. Nakagawa, T. Yokoyama, K. Toyota. Synthesis and liquid crystalline behavior of azulene-based liquid crystals with 6-hexadecyl substituents on each azulene ring[J]. Tetrahedron, 2010,66:8304-8312. doi: 10.1016/j.tet.2010.08.012

    22. [22]

      M. Koch, O. Blacque, K. Venkatesan. Syntheses and tunable emission properties of 2-alkynyl azulenes[J]. Org. Lett., 2012,14:1580-1583. doi: 10.1021/ol300327b

    23. [23]

      E. Amir, R.J. Amir, L.M. Campos, C.J. Hawker. Stimuli-responsive azulene-based conjugated oligomers with polyaniline-like properties[J]. J. Am. Chem. Soc., 2011,133:10046-10049. doi: 10.1021/ja203267g

    24. [24]

      S. Ito, T. Kubo, N. Morita. Preparation of azulenyllithium and magnesium reagents utilizing halogen-metal exchange reaction of several iodoazulenes with organolithium or magnesium ate complex[J]. Tetrahedron Lett., 2004,45:2891-2894. doi: 10.1016/j.tetlet.2004.02.059

    25. [25]

      S. Ito, T. Okujima, N. Morita. Preparation and Stille cross-coupling reaction of the first organotin reagents of azulenes. Easy access to poly(azulen-6-yl) benzene derivatives, J. Chem. Soc.[J]. Perkin Trans., 2002,1:1896-1905.  

    26. [26]

      K. Tsurui, M. Murai, S.Y. Ku, C.J. Hawker, M.J. Robb. Modulating the properties of azulene-containing polymers through controlled incorporation of regioisomers[J]. Adv. Funct. Mater., 2014,24:7338-7347. doi: 10.1002/adfm.v24.46

    27. [27]

      T. Shoji, A. Maruyama, T. Araki, S. Ito, T. Okujima. Synthesis of 2-and 6-thienylazulenes by palladium-catalyzed direct arylation of 2-and 6-haloazulenes with thiophene derivatives[J]. Org. Biomol. Chem., 2015,13:10191-10197. doi: 10.1039/C5OB01317H

    28. [28]

      S. Kumar, J. Shao, X. Liang. Impulse response of nonlinear Schrodinger equation and its implications for pre-dispersed fiber-optic communication systems[J]. Opt. Express, 2014,22:32282-32292. doi: 10.1364/OE.22.032282

    29. [29]

      D. Cotter. Nonlinear optics for high-speed digital information processing[J]. Science, 1999,286:1523-1528. doi: 10.1126/science.286.5444.1523

    30. [30]

      C. Wang, T. Zhang, W. Lin. Rational synthesis of noncentrosymmetric metalorganic frameworks for second-order nonlinear optics[J]. Chem. Rev., 2012,112:1084-1104. doi: 10.1021/cr200252n

    31. [31]

      S.R. Marder, C.B. Gorman, B.G. Tiemann, L.T. Cheng. Stronger acceptors can diminish nonlinear optical response in simple donor-acceptor polyenes[J]. J. Am. Chem. Soc., 1993,115:3006-3007. doi: 10.1021/ja00060a071

    32. [32]

      J.M. Raimundo, P. Blanchard, N. Gallego-Planas. Design and synthesis of push-pull chromophores for second-order nonlinear optics derived from rigidified thiophene-based pi-conjugating spacers[J]. J. Org. Chem., 2002,67:205-218. doi: 10.1021/jo010713f

    33. [33]

      Z. Yang, M. Jazbinsek, B. Ruiz. Molecular engineering of stilbazolium derivatives for second-order nonlinear optics[J]. Chem. Mater., 2007,19:3512-3518. doi: 10.1021/cm070764e

    34. [34]

      P.G. Lacroix, I. Malfant, G. Iftime. Azo-azulene derivatives as second-order nonlinear optical chromophores[J]. Chem. Eur. J., 2000,6:2599-2608. doi: 10.1002/(ISSN)1521-3765

    35. [35]

      G. Iftime, P.G. Lacroix, K. Nakatani, A.C. Razus. Push-pull azulene-based chromophores with nonlinear optical properties[J]. Tetrahedron Lett., 1998,39:6853-6856. doi: 10.1016/S0040-4039(98)01495-6

    36. [36]

      A. Migalska-Zalas, Y. El Kouari, S. Touhtouh. Methodologies for computing UV-VIS spectra and nonlinear properties of azo-azulene derivatives[J]. Opt. Mater., 2012,34:1639-1643. doi: 10.1016/j.optmat.2012.03.021

    37. [37]

      A.E. Asato, R.S.H. Liu, V.P. Rao, Y.M. Cai. Azulene-containing donor-acceptor compounds as second-order nonlinear chromophores[J]. Tetrahedron Lett., 1996,37:419-422. doi: 10.1016/0040-4039(95)02202-3

    38. [38]

      B.J. Coe, J.A. Harris, I. Asselberghs. Quadratic nonlinear optical properties of N-aryl stilbazolium dyes[J]. Adv. Funct. Mater., 2002,12:110-116. doi: 10.1002/(ISSN)1616-3028

    39. [39]

      L. Cristian, I. Sasaki, P.G. Lacroix. Donating strength of azulene in various azulen-1-yl-substituted cationic dyes: application in nonlinear optics[J]. Chem. Mater., 2004,16:3543-3551. doi: 10.1021/cm0492989

    40. [40]

      R. Herrmann, B. Pedersen, G. Wagner, J.H. Youn. Molecules with potential applications for non-linear optics: the combination of ferrocene and azulene[J]. J. Organomet. Chem., 1998,571:261-266. doi: 10.1016/S0022-328X(98)00872-9

    41. [41]

      H. Sirringhaus. Integrated optoelectronic devices based on conjugated polymers[J]. Science, 1998,280:1741-1744. doi: 10.1126/science.280.5370.1741

    42. [42]

      S. Steudel, K. Myny, V. Arkhipov. 50 MHz rectifier based on an organic diode[J]. Nat. Mater., 2005,4:597-600. doi: 10.1038/nmat1434

    43. [43]

      J.H. Park, J.E. Royer, E. Chagarov. Atomic imaging of the irreversible sensing mechanism of NO2 adsorption on copper phthalocyanine[J]. J. Am. Chem. Soc., 2013,135:14600-14609. doi: 10.1021/ja403752r

    44. [44]

      Y. Zhao, Y. Guo, Y. Liu. 25th anniversary article: recent advances in n-type and ambipolar organic field-effect transistors,[J]. Adv. Mater., 2013,25:5372-5391. doi: 10.1002/adma.201302315

    45. [45]

      H. Xu, Y.C. Zhou, X.Y. Zhou. Molecular packing-induced transition between ambipolar and unipolar behavior in dithiophene-4, 9-dione-containing organic semiconductors[J]. Adv. Funct. Mater., 2014,24:2907-2915. doi: 10.1002/adfm.v24.19

    46. [46]

      C. Kanimozhi, M. Naik, N. Yaacobi-Gross. Controlling conformations of diketopyrrolopyrrole-based conjugated polymers: role of torsional angle[J]. J. Phys. Chem. C, 2014,118:11536-11544. doi: 10.1021/jp501526h

    47. [47]

      B. He, A.B. Pun, D. Zherebetskyy. New form of an old natural dye: bayannulated indigo (BAI) as an excellent electron accepting unit for high performance organic semiconductors[J]. J. Am. Chem. Soc., 2014,136:15093-15101. doi: 10.1021/ja508807m

    48. [48]

      J. Kim, M.H. Yun, G.H. Kim. Synthesis of PCDTBT-based fluorinated polymers for high open-circuit voltage in organic photovoltaics: towards an understanding of relationships between polymer energy levels engineering and ideal morphology control[J]. ACS Appl. Mater. Interfaces, 2014,6:7523-7534. doi: 10.1021/am500891z

    49. [49]

      M.M. Durban, P.D. Kazarinoff, Y. Segawa, C.K. Luscombe. Synthesis and characterization of solution-processable ladderized n-type naphthalene bisimide copolymers for OFET applications[J]. Macromolecules, 2011,44:4721-4728. doi: 10.1021/ma2004822

    50. [50]

      B. Sun, W. Hong, Z. Yan, H. Aziz, Y. Li. Record high electron mobility of 6.3 cm2V-1s-1 achieved for polymer semiconductors using a new building block[J]. Adv. Mater., 2014,26:2636-2642. doi: 10.1002/adma.v26.17

    51. [51]

      Y.Y. Liu, C.L. Song, W.J. Zeng. High and balanced hole and electron mobilities from ambipolar thin-film transistors based on nitrogen-containing oligoacences[J]. J. Am. Chem. Soc., 2010,132:16349-16351. doi: 10.1021/ja107046s

    52. [52]

      Y. Yamaguchi, Y. Maruya, H. Katagiri, K.I. Nakayama, Y. Ohba. Synthesis, properties, and OFET characteristics of 5,5'-di(2-azulenyl)-2,2'-bithiophene (DAzBT) and 2,5-di(2-azulenyl)-thieno[3,2-b]thiophene (DAzTT)[J]. Org. Lett., 2012,14:2316-2319. doi: 10.1021/ol3007327

    53. [53]

      Y. Yamaguchi, K. Ogawa, K. Nakayama, Y. Ohba, H. Katagiri. Terazulene: a highperformance n-type organic field-effect transistor based on molecular orbital distribution control[J]. J. Am. Chem. Soc., 2013,135:19095-19098. doi: 10.1021/ja410696j

    54. [54]

      J. Yao, Z. Cai, Z. Liu. Tuning the semiconducting behaviors of new alternating dithienyldiketopyrrolopyrrole-azulene conjugated polymers by varying the linking positions of azulene[J]. Macromolecules, 2015,48:2039-2047. doi: 10.1021/acs.macromol.5b00158

    55. [55]

      J.Q. Jiang, C.L. Sun, Z.F. Shi, H.L. Zhang. Squaraines as light-capturing materials in photovoltaic cells[J]. RSC Adv., 2014,4:32987-32996. doi: 10.1039/C4RA03972F

    56. [56]

      E.C.P. Smits, S. Setayesh, T.D. Anthopoulos. Near-infrared light-emitting ambipolar organic field-effect transistors[J]. Adv. Mater., 2007,19:734-738. doi: 10.1002/(ISSN)1521-4095

    57. [57]

      P.H. Woebkenberg, J.G. Labram, J.M. Swiecicki. Ambipolar organic transistors and near-infrared phototransistors based on a solution-processable squarilium dye[J]. J. Mater. Chem., 2010,20:3673-3680. doi: 10.1039/b919970e

    58. [58]

      T. Umeyama, Y. Watanabe, T. Miyata, H. Imahori. Electron-rich five-membered ring of azulene as a donor unit in donor-acceptor alternating copolymers for polymer solar cell applications[J]. Chem. Lett., 2015,44:47-49. doi: 10.1246/cl.140904

    59. [59]

      C. Pagba, G. Zordan, E. Galoppini. Hybrid photoactive assemblies: electron injection from host-guest complexes into semiconductor nanoparticles[J]. J. Am. Chem. Soc., 2004,126:9888-9889. doi: 10.1021/ja0475252

    60. [60]

      M. Myahkostupov, C.V. Pagba, L. Gundlach, P. Piotrowiak. Vibrational state dependence of interfacial electron transfer: hot electron injection from the S1 state of azulene into TiO2 nanoparticles[J]. J. Phys. Chem. C, 2013,117:20485-20493. doi: 10.1021/jp406662n

    61. [61]

      R.S.H. Liu, R.S. Muthyala, X.S. Wang. Correlation of substituent effects and energy levels of the two lowest excited states of the azulenic chromophore[J]. Org. Lett., 2000,2:269-271. doi: 10.1021/ol990324w

    62. [62]

      X.H. Zhang, C. Li, W.B. Wang. Photophysical, electrochemical, and photoelectrochemical properties of new azulene-based dye molecules[J]. J. Mater. Chem., 2007,17:642-649. doi: 10.1039/B613703B

    63. [63]

      H. Nishimura, N. Ishida, A. Shimazaki. Hole-transporting materials with a two-dimensionally expanded pi-system around an azulene core for efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:15656-15659. doi: 10.1021/jacs.5b11008

    64. [64]

      M.C. Hanna, A.J. Nozik. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers[J]. J. Appl. Phys., 2006,100074510. doi: 10.1063/1.2356795

    65. [65]

      M.B. Smith, J. Michl. Singlet fission[J]. Chem. Rev., 2010,110:6891-6936. doi: 10.1021/cr1002613

    66. [66]

      T. Zeng, N. Ananth, R. Hoffmann. Seeking small molecules for singlet fission: a heteroatom substitution strategy[J]. J. Am. Chem. Soc., 2014,136:12638-12647. doi: 10.1021/ja505275m

    67. [67]

      T. Minami, S. Ito, M. Nakano. Theoretical study of singlet fission in oligorylenes[J]. J. Phys. Chem. Lett., 2012,3:2719-2723. doi: 10.1021/jz3011749

    68. [68]

      H. Song, Y. Kim, Y.H. Jang. Observation of molecular orbital gating[J]. Nature, 2009,462:1039-1043. doi: 10.1038/nature08639

    69. [69]

      I. Diez-Perez, J. Hihath, Y. Lee. Rectification and stability of a single molecular diode with controlled orientation[J]. Nat. Chem., 2009,1:635-641. doi: 10.1038/nchem.392

    70. [70]

      C.W. Marquardt, S. Grunder, A. Blaszczyk. Electroluminescence from a single nanotube-molecule-nanotube junction[J]. Nat. Nanotechnol., 2010,5:863-867. doi: 10.1038/nnano.2010.230

    71. [71]

      M. Taniguchi, M. Tsutsui, R. Mogi. Dependence of single-molecule conductance on molecule junction symmetry[J]. J. Am. Chem. Soc., 2011,133:11426-11429. doi: 10.1021/ja2033926

    72. [72]

      Y. Song, Z. Xie, Y. Ma, Z.L. Li, C.K. Wang. Giant rectification ratios of azulene-like dipole molecular junctions induced by chemical doping in armchair-edged graphene nanoribbon electrodes[J]. J. Phys. Chem. C, 2014,118:18713-18720. doi: 10.1021/jp504448n

    73. [73]

      K. Yokota, M. Taniguchi, M. Tsutsui, T. Kawai. Molecule electrode bonding design for high single-molecule conductance[J]. J. Am. Chem. Soc., 2010,132:17364-17365. doi: 10.1021/ja108032q

    74. [74]

      E. Leary, M.T. Gonzalez, C. van der Pol. Unambiguous one-molecule conductance measurements under ambient conditions[J]. Nano Lett., 2011,11:2236-2241. doi: 10.1021/nl200294s

    75. [75]

      W. Chen, H. Li, J.R. Widawsky. Aromaticity decreases single-molecule junction conductance[J]. J. Am. Chem. Soc., 2014,136:918-920. doi: 10.1021/ja411143s

    76. [76]

      C. Wang, A.S. Batsanov, M.R. Bryce. Oligoyne single molecule wires[J]. J. Am. Chem. Soc., 2009,131:15647-15654. doi: 10.1021/ja9061129

    77. [77]

      J. Xia, B. Capozzi, S. Wei. Breakdown of interference rules in azulene, a nonalternant hydrocarbon[J]. Nano Lett., 2014,14:2941-2945. doi: 10.1021/nl5010702

    78. [78]

      R. Stadler. Comment on "Breakdown of interference rules in azulene, a nonalternant hydrocarbon"[J]. Nano Lett., 2015,15:7175-7176. doi: 10.1021/acs.nanolett.5b03468

    79. [79]

      R.S.H. Liu, R.S. Muthyala, X.S. Wang. Correlation of substituent effects and energy levels of the two lowest excited states of the azulenic chromophore[J]. Org. Lett., 2000,2:269-271. doi: 10.1021/ol990324w

    80. [80]

      K.G. Zhou, Y.H. Zhang, L.J. Wang. Can azulene-like molecules function as substitution-free molecular rectifiers[J]. Phys. Chem. Chem. Phys., 2011,13:15882-15890. doi: 10.1039/c0cp02693j

    81. [81]

      T. Hartman, K. Collins, R. Wehlitz. Isomer effects in the double-to-single photoionization ratio of aromatic hydrocarbons[J]. Phys. Rev. A, 2013,88024701. doi: 10.1103/PhysRevA.88.024701

    82. [82]

      Y. Shi, D. Frattarelli, N. Watanabe. Ultra-high-response, multiply twisted electro-optic chromophores: influence of p-system elongation and interplanar torsion on hyperpolarizability[J]. J. Am. Chem. Soc., 2015,137:12521-12538. doi: 10.1021/jacs.5b04636

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Bo YuPengchen DuJianwen GuoHanshen XinJianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321

    3. [3]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    4. [4]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    5. [5]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    6. [6]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    7. [7]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    8. [8]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    9. [9]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    10. [10]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    11. [11]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    12. [12]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    13. [13]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    14. [14]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    15. [15]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    16. [16]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    17. [17]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    18. [18]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    19. [19]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    20. [20]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

Metrics
  • PDF Downloads(28)
  • Abstract views(1361)
  • HTML views(245)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return