Azulene-based organic functional molecules for optoelectronics
- Corresponding author: Hao-Li Zhang, Haoli.zhang@lzu.edu.cn
Citation:
Jin-Xue Dong, Hao-Li Zhang. Azulene-based organic functional molecules for optoelectronics[J]. Chinese Chemical Letters,
;2016, 27(8): 1097-1104.
doi:
10.1016/j.cclet.2016.05.005
A.G. Anderson, B.M. Steckler. Azulene. VIII. A study of the visible absorption spectra and dipole moments of some 1- and 1,3-substituted azulenes[J]. J. Am. Chem. Soc., 1959,81:4941-4946. doi: 10.1021/ja01527a046
A.E. Sherndal. On the blue hydrocarbon occurring in some essential oils[J]. J. Am. Chem. Soc., 1915,37:167-171. doi: 10.1021/ja02270a016
D.M. Lemal, G.D. Goldman. Synthesis of azulene, a blue hydrocarbon[J]. J. Chem. Educ., 1988,65:923-925. doi: 10.1021/ed065p923
E. Puodziukynaite, H.W. Wang, J. Lawrence. Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication[J]. J. Am. Chem. Soc., 2014,136:11043-11049. doi: 10.1021/ja504670k
H. Korichi, F. Zouchoune, S.M. Zendaoui, B. Zouchoune, J.Y. Saillard. The coordination chemistry of azulene: a comprehensive DFT investigation[J]. Organometallics, 2010,29:1693-1706. doi: 10.1021/om901089z
S.V. Shevyakov, H.R. Li, R. Muthyala. Orbital control of the color and excited state properties of formylated and fluorinated derivatives of azulene[J]. J. Phys. Chem. A, 2003,107:3295-3299. doi: 10.1021/jp021605f
M. Myahkostupov, C.V. Pagba, L. Gundlach, P. Piotrowiak. Vibrational state dependence of interfacial electron transfer: hot electron injection from the S1 state of azulene into TiO2 nanoparticles[J]. J. Phys. Chem. C, 2013,117:20485-20493. doi: 10.1021/jp406662n
J.P. Heritage, A. Penzkofer. Relaxation dynamics of the first excited electronic singlet state of azulene in solution[J]. Chem. Phys. Lett., 1976,44:76-81. doi: 10.1016/0009-2614(76)80413-7
M. Kasha. Characterization of electronic transitions in complex molecules[J]. Discuss. Faraday Soc., 1950,9:14-19. doi: 10.1039/df9500900014
T. Itoh. Fluorescence and phosphorescence from higher excited states of organic molecules[J]. Chem. Rev., 2012,112:4541-4568. doi: 10.1021/cr200166m
L.T. Scott, C.M. Adams. Quinones of azulene. 4. Synthesis and characterization of the parent 1, 5- and 1,7-quinones[J]. J. Am. Chem. Soc., 1984,106:4857-4861. doi: 10.1021/ja00329a037
Y. Sugihara, T. Yagi, I. Murata, A. Imamura. 1-Phenylthieno[3, 4-d]borepin: a new 10.pi. electron system isoelectronic with azulene[J]. J. Am. Chem. Soc., 1992,114:1479-1481. doi: 10.1021/ja00030a052
B.C. Hong, Y.F. Jiang, E.S. Kumar. Microwave-assisted 6+4-cycloaddition of fulvenes and alpha-pyrones to azulene-indoles: facile syntheses of novel antineoplastic agents[J]. Bioorg. Med. Chem. Lett., 2001,11:1981-1984. doi: 10.1016/S0960-894X(01)00349-3
E.H. Ghazvini Zadeh, A.W. Woodward, D. Richardson, M.V. Bondar, K.D. Belfield. Stimuli-responsive cyclopenta[ef]heptalenes: synthesis and optical properties[J]. Eur. J. Org. Chem., 2015:2271-2276.
A. Muranaka, M. Yonehara, M. Uchiyama. Azulenocyanine: a new family of phthalocyanines with intense near-IR absorption[J]. J. Am. Chem. Soc., 2010,132:7844-7845. doi: 10.1021/ja101818g
R.S. Muthyala, R.S.H. Liu. Synthesis of fluorinated azulenes[J]. J. Fluorine Chem., 1998,89:173-175. doi: 10.1016/S0022-1139(98)00139-0
H.Q. Do, O. Daugulis. Copper-catalyzed cyanation of heterocycle carbon hydrohydrogen bonds[J]. Org. Lett., 2010,12:2517-2519. doi: 10.1021/ol100772u
G. Dyker, S. Borowski, J. Heiermann. First intermolecular palladium catalyzed arylation of an unfunctionalized aromatic hydrocarbon[J]. J. Organomet. Chem., 2000,606:108-111. doi: 10.1016/S0022-328X(00)00224-2
K. Kurotobi, M. Miyauchi, K. Takakura, T. Murafuji, Y. Sugihara. Direct introduction of a boryl substituent into the 2-position of azulene: application of the Miyaura and Smith methods to azulene[J]. Eur. J. Org. Chem., 2003:3663-3665.
S. Ito, M. Ueda, R. Sekiguchi, J. Kawakami. Efficient synthesis and redox behavior of a series of 6-alkyl-2-phenylazulenes[J]. Tetrahedron, 2013,69:4259-4269. doi: 10.1016/j.tet.2013.03.084
K. Nakagawa, T. Yokoyama, K. Toyota. Synthesis and liquid crystalline behavior of azulene-based liquid crystals with 6-hexadecyl substituents on each azulene ring[J]. Tetrahedron, 2010,66:8304-8312. doi: 10.1016/j.tet.2010.08.012
M. Koch, O. Blacque, K. Venkatesan. Syntheses and tunable emission properties of 2-alkynyl azulenes[J]. Org. Lett., 2012,14:1580-1583. doi: 10.1021/ol300327b
E. Amir, R.J. Amir, L.M. Campos, C.J. Hawker. Stimuli-responsive azulene-based conjugated oligomers with polyaniline-like properties[J]. J. Am. Chem. Soc., 2011,133:10046-10049. doi: 10.1021/ja203267g
S. Ito, T. Kubo, N. Morita. Preparation of azulenyllithium and magnesium reagents utilizing halogen-metal exchange reaction of several iodoazulenes with organolithium or magnesium ate complex[J]. Tetrahedron Lett., 2004,45:2891-2894. doi: 10.1016/j.tetlet.2004.02.059
S. Ito, T. Okujima, N. Morita. Preparation and Stille cross-coupling reaction of the first organotin reagents of azulenes. Easy access to poly(azulen-6-yl) benzene derivatives, J. Chem. Soc.[J]. Perkin Trans., 2002,1:1896-1905.
K. Tsurui, M. Murai, S.Y. Ku, C.J. Hawker, M.J. Robb. Modulating the properties of azulene-containing polymers through controlled incorporation of regioisomers[J]. Adv. Funct. Mater., 2014,24:7338-7347. doi: 10.1002/adfm.v24.46
T. Shoji, A. Maruyama, T. Araki, S. Ito, T. Okujima. Synthesis of 2-and 6-thienylazulenes by palladium-catalyzed direct arylation of 2-and 6-haloazulenes with thiophene derivatives[J]. Org. Biomol. Chem., 2015,13:10191-10197. doi: 10.1039/C5OB01317H
S. Kumar, J. Shao, X. Liang. Impulse response of nonlinear Schrodinger equation and its implications for pre-dispersed fiber-optic communication systems[J]. Opt. Express, 2014,22:32282-32292. doi: 10.1364/OE.22.032282
D. Cotter. Nonlinear optics for high-speed digital information processing[J]. Science, 1999,286:1523-1528. doi: 10.1126/science.286.5444.1523
C. Wang, T. Zhang, W. Lin. Rational synthesis of noncentrosymmetric metalorganic frameworks for second-order nonlinear optics[J]. Chem. Rev., 2012,112:1084-1104. doi: 10.1021/cr200252n
S.R. Marder, C.B. Gorman, B.G. Tiemann, L.T. Cheng. Stronger acceptors can diminish nonlinear optical response in simple donor-acceptor polyenes[J]. J. Am. Chem. Soc., 1993,115:3006-3007. doi: 10.1021/ja00060a071
J.M. Raimundo, P. Blanchard, N. Gallego-Planas. Design and synthesis of push-pull chromophores for second-order nonlinear optics derived from rigidified thiophene-based pi-conjugating spacers[J]. J. Org. Chem., 2002,67:205-218. doi: 10.1021/jo010713f
Z. Yang, M. Jazbinsek, B. Ruiz. Molecular engineering of stilbazolium derivatives for second-order nonlinear optics[J]. Chem. Mater., 2007,19:3512-3518. doi: 10.1021/cm070764e
P.G. Lacroix, I. Malfant, G. Iftime. Azo-azulene derivatives as second-order nonlinear optical chromophores[J]. Chem. Eur. J., 2000,6:2599-2608. doi: 10.1002/(ISSN)1521-3765
G. Iftime, P.G. Lacroix, K. Nakatani, A.C. Razus. Push-pull azulene-based chromophores with nonlinear optical properties[J]. Tetrahedron Lett., 1998,39:6853-6856. doi: 10.1016/S0040-4039(98)01495-6
A. Migalska-Zalas, Y. El Kouari, S. Touhtouh. Methodologies for computing UV-VIS spectra and nonlinear properties of azo-azulene derivatives[J]. Opt. Mater., 2012,34:1639-1643. doi: 10.1016/j.optmat.2012.03.021
A.E. Asato, R.S.H. Liu, V.P. Rao, Y.M. Cai. Azulene-containing donor-acceptor compounds as second-order nonlinear chromophores[J]. Tetrahedron Lett., 1996,37:419-422. doi: 10.1016/0040-4039(95)02202-3
B.J. Coe, J.A. Harris, I. Asselberghs. Quadratic nonlinear optical properties of N-aryl stilbazolium dyes[J]. Adv. Funct. Mater., 2002,12:110-116. doi: 10.1002/(ISSN)1616-3028
L. Cristian, I. Sasaki, P.G. Lacroix. Donating strength of azulene in various azulen-1-yl-substituted cationic dyes: application in nonlinear optics[J]. Chem. Mater., 2004,16:3543-3551. doi: 10.1021/cm0492989
R. Herrmann, B. Pedersen, G. Wagner, J.H. Youn. Molecules with potential applications for non-linear optics: the combination of ferrocene and azulene[J]. J. Organomet. Chem., 1998,571:261-266. doi: 10.1016/S0022-328X(98)00872-9
H. Sirringhaus. Integrated optoelectronic devices based on conjugated polymers[J]. Science, 1998,280:1741-1744. doi: 10.1126/science.280.5370.1741
S. Steudel, K. Myny, V. Arkhipov. 50 MHz rectifier based on an organic diode[J]. Nat. Mater., 2005,4:597-600. doi: 10.1038/nmat1434
J.H. Park, J.E. Royer, E. Chagarov. Atomic imaging of the irreversible sensing mechanism of NO2 adsorption on copper phthalocyanine[J]. J. Am. Chem. Soc., 2013,135:14600-14609. doi: 10.1021/ja403752r
Y. Zhao, Y. Guo, Y. Liu. 25th anniversary article: recent advances in n-type and ambipolar organic field-effect transistors,[J]. Adv. Mater., 2013,25:5372-5391. doi: 10.1002/adma.201302315
H. Xu, Y.C. Zhou, X.Y. Zhou. Molecular packing-induced transition between ambipolar and unipolar behavior in dithiophene-4, 9-dione-containing organic semiconductors[J]. Adv. Funct. Mater., 2014,24:2907-2915. doi: 10.1002/adfm.v24.19
C. Kanimozhi, M. Naik, N. Yaacobi-Gross. Controlling conformations of diketopyrrolopyrrole-based conjugated polymers: role of torsional angle[J]. J. Phys. Chem. C, 2014,118:11536-11544. doi: 10.1021/jp501526h
B. He, A.B. Pun, D. Zherebetskyy. New form of an old natural dye: bayannulated indigo (BAI) as an excellent electron accepting unit for high performance organic semiconductors[J]. J. Am. Chem. Soc., 2014,136:15093-15101. doi: 10.1021/ja508807m
J. Kim, M.H. Yun, G.H. Kim. Synthesis of PCDTBT-based fluorinated polymers for high open-circuit voltage in organic photovoltaics: towards an understanding of relationships between polymer energy levels engineering and ideal morphology control[J]. ACS Appl. Mater. Interfaces, 2014,6:7523-7534. doi: 10.1021/am500891z
M.M. Durban, P.D. Kazarinoff, Y. Segawa, C.K. Luscombe. Synthesis and characterization of solution-processable ladderized n-type naphthalene bisimide copolymers for OFET applications[J]. Macromolecules, 2011,44:4721-4728. doi: 10.1021/ma2004822
B. Sun, W. Hong, Z. Yan, H. Aziz, Y. Li. Record high electron mobility of 6.3 cm2V-1s-1 achieved for polymer semiconductors using a new building block[J]. Adv. Mater., 2014,26:2636-2642. doi: 10.1002/adma.v26.17
Y.Y. Liu, C.L. Song, W.J. Zeng. High and balanced hole and electron mobilities from ambipolar thin-film transistors based on nitrogen-containing oligoacences[J]. J. Am. Chem. Soc., 2010,132:16349-16351. doi: 10.1021/ja107046s
Y. Yamaguchi, Y. Maruya, H. Katagiri, K.I. Nakayama, Y. Ohba. Synthesis, properties, and OFET characteristics of 5,5'-di(2-azulenyl)-2,2'-bithiophene (DAzBT) and 2,5-di(2-azulenyl)-thieno[3,2-b]thiophene (DAzTT)[J]. Org. Lett., 2012,14:2316-2319. doi: 10.1021/ol3007327
Y. Yamaguchi, K. Ogawa, K. Nakayama, Y. Ohba, H. Katagiri. Terazulene: a highperformance n-type organic field-effect transistor based on molecular orbital distribution control[J]. J. Am. Chem. Soc., 2013,135:19095-19098. doi: 10.1021/ja410696j
J. Yao, Z. Cai, Z. Liu. Tuning the semiconducting behaviors of new alternating dithienyldiketopyrrolopyrrole-azulene conjugated polymers by varying the linking positions of azulene[J]. Macromolecules, 2015,48:2039-2047. doi: 10.1021/acs.macromol.5b00158
J.Q. Jiang, C.L. Sun, Z.F. Shi, H.L. Zhang. Squaraines as light-capturing materials in photovoltaic cells[J]. RSC Adv., 2014,4:32987-32996. doi: 10.1039/C4RA03972F
E.C.P. Smits, S. Setayesh, T.D. Anthopoulos. Near-infrared light-emitting ambipolar organic field-effect transistors[J]. Adv. Mater., 2007,19:734-738. doi: 10.1002/(ISSN)1521-4095
P.H. Woebkenberg, J.G. Labram, J.M. Swiecicki. Ambipolar organic transistors and near-infrared phototransistors based on a solution-processable squarilium dye[J]. J. Mater. Chem., 2010,20:3673-3680. doi: 10.1039/b919970e
T. Umeyama, Y. Watanabe, T. Miyata, H. Imahori. Electron-rich five-membered ring of azulene as a donor unit in donor-acceptor alternating copolymers for polymer solar cell applications[J]. Chem. Lett., 2015,44:47-49. doi: 10.1246/cl.140904
C. Pagba, G. Zordan, E. Galoppini. Hybrid photoactive assemblies: electron injection from host-guest complexes into semiconductor nanoparticles[J]. J. Am. Chem. Soc., 2004,126:9888-9889. doi: 10.1021/ja0475252
M. Myahkostupov, C.V. Pagba, L. Gundlach, P. Piotrowiak. Vibrational state dependence of interfacial electron transfer: hot electron injection from the S1 state of azulene into TiO2 nanoparticles[J]. J. Phys. Chem. C, 2013,117:20485-20493. doi: 10.1021/jp406662n
R.S.H. Liu, R.S. Muthyala, X.S. Wang. Correlation of substituent effects and energy levels of the two lowest excited states of the azulenic chromophore[J]. Org. Lett., 2000,2:269-271. doi: 10.1021/ol990324w
X.H. Zhang, C. Li, W.B. Wang. Photophysical, electrochemical, and photoelectrochemical properties of new azulene-based dye molecules[J]. J. Mater. Chem., 2007,17:642-649. doi: 10.1039/B613703B
H. Nishimura, N. Ishida, A. Shimazaki. Hole-transporting materials with a two-dimensionally expanded pi-system around an azulene core for efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2015,137:15656-15659. doi: 10.1021/jacs.5b11008
M.C. Hanna, A.J. Nozik. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers[J]. J. Appl. Phys., 2006,100074510. doi: 10.1063/1.2356795
M.B. Smith, J. Michl. Singlet fission[J]. Chem. Rev., 2010,110:6891-6936. doi: 10.1021/cr1002613
T. Zeng, N. Ananth, R. Hoffmann. Seeking small molecules for singlet fission: a heteroatom substitution strategy[J]. J. Am. Chem. Soc., 2014,136:12638-12647. doi: 10.1021/ja505275m
T. Minami, S. Ito, M. Nakano. Theoretical study of singlet fission in oligorylenes[J]. J. Phys. Chem. Lett., 2012,3:2719-2723. doi: 10.1021/jz3011749
H. Song, Y. Kim, Y.H. Jang. Observation of molecular orbital gating[J]. Nature, 2009,462:1039-1043. doi: 10.1038/nature08639
I. Diez-Perez, J. Hihath, Y. Lee. Rectification and stability of a single molecular diode with controlled orientation[J]. Nat. Chem., 2009,1:635-641. doi: 10.1038/nchem.392
C.W. Marquardt, S. Grunder, A. Blaszczyk. Electroluminescence from a single nanotube-molecule-nanotube junction[J]. Nat. Nanotechnol., 2010,5:863-867. doi: 10.1038/nnano.2010.230
M. Taniguchi, M. Tsutsui, R. Mogi. Dependence of single-molecule conductance on molecule junction symmetry[J]. J. Am. Chem. Soc., 2011,133:11426-11429. doi: 10.1021/ja2033926
Y. Song, Z. Xie, Y. Ma, Z.L. Li, C.K. Wang. Giant rectification ratios of azulene-like dipole molecular junctions induced by chemical doping in armchair-edged graphene nanoribbon electrodes[J]. J. Phys. Chem. C, 2014,118:18713-18720. doi: 10.1021/jp504448n
K. Yokota, M. Taniguchi, M. Tsutsui, T. Kawai. Molecule electrode bonding design for high single-molecule conductance[J]. J. Am. Chem. Soc., 2010,132:17364-17365. doi: 10.1021/ja108032q
E. Leary, M.T. Gonzalez, C. van der Pol. Unambiguous one-molecule conductance measurements under ambient conditions[J]. Nano Lett., 2011,11:2236-2241. doi: 10.1021/nl200294s
W. Chen, H. Li, J.R. Widawsky. Aromaticity decreases single-molecule junction conductance[J]. J. Am. Chem. Soc., 2014,136:918-920. doi: 10.1021/ja411143s
C. Wang, A.S. Batsanov, M.R. Bryce. Oligoyne single molecule wires[J]. J. Am. Chem. Soc., 2009,131:15647-15654. doi: 10.1021/ja9061129
J. Xia, B. Capozzi, S. Wei. Breakdown of interference rules in azulene, a nonalternant hydrocarbon[J]. Nano Lett., 2014,14:2941-2945. doi: 10.1021/nl5010702
R. Stadler. Comment on "Breakdown of interference rules in azulene, a nonalternant hydrocarbon"[J]. Nano Lett., 2015,15:7175-7176. doi: 10.1021/acs.nanolett.5b03468
R.S.H. Liu, R.S. Muthyala, X.S. Wang. Correlation of substituent effects and energy levels of the two lowest excited states of the azulenic chromophore[J]. Org. Lett., 2000,2:269-271. doi: 10.1021/ol990324w
K.G. Zhou, Y.H. Zhang, L.J. Wang. Can azulene-like molecules function as substitution-free molecular rectifiers[J]. Phys. Chem. Chem. Phys., 2011,13:15882-15890. doi: 10.1039/c0cp02693j
T. Hartman, K. Collins, R. Wehlitz. Isomer effects in the double-to-single photoionization ratio of aromatic hydrocarbons[J]. Phys. Rev. A, 2013,88024701. doi: 10.1103/PhysRevA.88.024701
Y. Shi, D. Frattarelli, N. Watanabe. Ultra-high-response, multiply twisted electro-optic chromophores: influence of p-system elongation and interplanar torsion on hyperpolarizability[J]. J. Am. Chem. Soc., 2015,137:12521-12538. doi: 10.1021/jacs.5b04636
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Bo Yu , Pengchen Du , Jianwen Guo , Hanshen Xin , Jianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Zhiyang Zhang , Yi Chen , Yingnan Zhang , Chuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Hongyuan Sha , Dongling Yang , Yanran Shang , Zujian Wang , Rongbing Su , Chao He , Xiaoming Yang , Xifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468