Citation: Dong Lu, Xiao-Chun Yang, Bing Leng, Xiao-Di Yang, Cong-Wu Ge, Xue-Shun Jia, Xi-Ke Gao. Fine-tuning the molecular energy levels by incorporating thiophene units onto the π-backbone of core-expanded naphthalene diimides[J]. Chinese Chemical Letters, ;2016, 27(7): 1022-1026. doi: 10.1016/j.cclet.2016.05.003 shu

Fine-tuning the molecular energy levels by incorporating thiophene units onto the π-backbone of core-expanded naphthalene diimides

Figures(5)

  • A series of core-expanded naphthalene diimides (NDI-DTYM) and thiophene-based derivatives (1a-c) were designed and synthesized to investigate the relationship between molecular structures and the highest occupied molecular orbital (HOMO) energy levels but has little impact on the lowest unoccupied molecular orbital (LUMO) energy levels. The results demonstrated that increasing the number of thiophene units can gradually elevate the HOMO energy levels but had little impact on the LUMO energy levels. The n-channel organic field-effect transistors (OFETs) based on 1b and 1c have demonstrated that these almost unchanged LUMO energy levels are proper to transport electrons.
  • 加载中
    1. [1]

      C. Wang, H. Dong, W. Hu. Semiconducting π-conjugated systems in fieldeffect transistors: a material odyssey of organic electronics[J]. Chem. Rev., 2012,112:2208-2267. doi: 10.1021/cr100380z

    2. [2]

      (a) C.L. Chochos, N. Tagmatarchis, V.G. Gregoriou. Rational design on n-type organic materials for high performance organic photovoltaics. RSC Adv., 2013, 3: 7160-7181;(b) X. Zhang, X. Li. Effect of the position of substitution on the electronic properties of nitrophenyl derivatives of fulleropyrrolidines: fundamental understanding toward raising LUMO energy of fullerene electron-acceptor. Chin. Chem. Lett., 2014, 25: 501-504;(c) T. Jiang, Z. Wang, B. Du, et al., Theoretical characterization of hole mobility in BTBPD. Chin. Chem. Lett., 2013, 24: 945-948.

    3. [3]

      R.H. Friend, R.W. Gymer, A.B. Holmes. Electroluminescence in conjugated polymers[J]. Nature, 1999,397:121-128. doi: 10.1038/16393

    4. [4]

      G. Gelinck, P. Heremans, K. Nomoto. Organic transistors in optical displays and microelectronic applications[J]. Adv. Mater., 2010,22:3778-3798. doi: 10.1002/adma.200903559

    5. [5]

      H., A., T.J.Marks. n-Channel semiconductor materials design for organic complementary circuits[J]. Acc. Chem. Res., 2011,44:501-510. doi: 10.1021/ar200006r

    6. [6]

      (a) X. Gao, Z. Zhao. High mobility organic semiconductors for field-effect transistors. Sci. China Chem., 2015, 58: 947-968;(b) J. Dou, Y. Zheng, Z. Yao, et al., A cofacially stacked electron-deficient small molecule with a high electron mobility of over, 10 cm2 V-1 s-1 in air. Adv. Mater. 2015, 27: 8051-8055;(c) G. Xue, J. Wu, C. Fan, et al., Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues. Mater. Horiz., 2016, 3: 119-123.

    7. [7]

      L. Pandey, C. Risko, J.E. Norton. Donor-acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties[J]. Macromolecules, 2012,45:6405-6414. doi: 10.1021/ma301164e

    8. [8]

      H. Usta, A. Facchetti, T.J. Marks. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis( dicyanovinylene) core[J]. J. Am. Chem. Soc., 2008,130:8580-8581. doi: 10.1021/ja802266u

    9. [9]

      (a) P. Sonar, S.P. Singh, P. Leclere, et al., Synthesis, characterization and comparative study of thiophene-benzothiadiazole based donor-acceptor-donor (D-A-D) materials, J. Mater. Chem. 2009, 19: 3228-3237;(b) Y. Cheng, S.H. Yang, C. Hsu. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev., 2009, 109: 5868-5923.

    10. [10]

      L. Bü rgi, M. Turbiez, R. Pfeiffer. High-mobility ambipolar near-infrared light-Emitting polymer field-effect transistors[J]. Adv. Mater., 2008,20:2217-2224. doi: 10.1002/(ISSN)1521-4095

    11. [11]

      A. Facchetti, M.H. Yoon, C.L. Stern. Building blocks for n-type organic electronics: regiochemically modulated inversion of majority carrier sign in perfluoroarene-modified polythiophene semiconductors[J]. Angew. Chem. Int. Ed., 2003,42:3900-3903. doi: 10.1002/(ISSN)1521-3773

    12. [12]

      B. Sun, W. Hong, Z.Q. Yan. Record high electron mobility of, 6.3 cm2 V-1 s-1 achieved for polymer semiconductors using a new building block[J]. Adv. Mater., 2014,26:2636-2642. doi: 10.1002/adma.v26.17

    13. [13]

      H. Krü ger, S. Janietz, D. Sainova. Hybrid supramolecular naphthalene diimide-thiophene structures and their application in polymer electronics[J]. Adv. Funct. Mater., 2007,17:3715-3723. doi: 10.1002/(ISSN)1616-3028

    14. [14]

      (a) X. Gao, C. Di, Y. Hu, et al., Core-expanded naphthalene diimides fused with, 2-(1, 3-dithiol-2-ylidene) malonitrile groups for high-performance, ambient-stable, solution-processed n-channel organic thin film transistors. J. Am. Chem. Soc. 2010, 132: 3697-3699;(b) Y. Hu, Y. Qin, X. Gao, et al., One-pot synthesis of core-expanded naphthalene diimides: enabling n-substituent modulation for diverse n-type organic materials. Org. Lett., 2012, 14: 292-295;(c) X. Gao, Y. Hu. Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. J. Mater. Chem. C., 2014, 2: 3099-3117.

    15. [15]

      S.L. Suraru, U. Zschieschang, H. Klauk. A core-extended naphthalene diimide as a p-channel semiconductor[J]. Chem. Commun., 2011,47:11504-11506. doi: 10.1039/c1cc15144d

    16. [16]

      (a) M.L. Tang, T. Okamoto, Z. Bao. High-performance organic semiconductors: asymmetric linear acenes containing sulphur. J. Am. Chem. Soc., 2006, 128: 16002-16003;(b) M.L. Tang, M.E. Roberts, J.J. Locklin, et al., Structure property relationships: asymmetric oligofluorene-thiophene molecules for organic TFTs. Chem. Mater., 2006, 18: 6250-6257.

    17. [17]

      B. Leng, D. Lu, X. Jia. Synthesis of monolateral and bilateral sulfur-heterocycle fused naphthalene diimides (NDIs) from monobromo and dibromo NDIs[J]. Org. Chem. Front., 2015,2:372-377. doi: 10.1039/C4QO00252K

    18. [18]

      A. Mishra, R.K. Behera, P.K. Behera. Cyanines during the, 1990s: a review[J]. Chem. Rev., 2000,100:1973-2012. doi: 10.1021/cr990402t

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    3. [3]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    4. [4]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    5. [5]

      Lei WangJun-Jie WuChang-Cun YanWan-Ying YangZong-Lu CheXin-Yu XiaXue-Dong WangLiang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    8. [8]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    9. [9]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    10. [10]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    11. [11]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    12. [12]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    13. [13]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    14. [14]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    15. [15]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    16. [16]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    17. [17]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    18. [18]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    19. [19]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    20. [20]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

Metrics
  • PDF Downloads(1)
  • Abstract views(711)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return