Citation: Wu Zhi-Meng, Liu Shao-Zhong, Cheng Xiao-Zhong, Ding Wen-Zhang, Zhu Tao, Chen Bing. Recent progress of on-resin cyclization for the synthesis of clycopeptidomimetics[J]. Chinese Chemical Letters, ;2016, 27(12): 1731-1739. doi: 10.1016/j.cclet.2016.04.024 shu

Recent progress of on-resin cyclization for the synthesis of clycopeptidomimetics

  • Corresponding author: Wu Zhi-Meng, zwu@jiangnan.edu.cn
  • Received Date: 30 March 2016
    Revised Date: 15 April 2016
    Accepted Date: 28 April 2016
    Available Online: 18 December 2016

Figures(23)

  • Cyclopeptidomimetics are class of cyclopeptides with unnatural linkage. They usually displayed unique constrained structure, enhanced proteolytic stability, and other drug-like character; and have been widely used in medicinal chemistry. Therefore, development of efficient strategies for the synthesis of cyclopeptidomimetics has received many attentions. On-resin cyclization strategy is one of the effective approaches developed to overcome the competing side reaction such as oligomerization and cyclooligomers occurred in solution cyclization. This approach took advantage of the "pseudo-dilution" effect to avoid these undesired by-products and greatly simplified the downstream product purification process. This review summarized the recent on-resin peptide cyclization strategies for the synthesis of cyclopeptidomimetics.
  • 加载中
    1. [1]

      (a) E. Marsault, M.L. Peterson, Macrocycles are great cycles:applications, opportunities, and challenges of synthetic macrocycles in drug discovery, J. Med. Chem. 54(2011) 1961-2004;(b) E.M. Driggers, S.P. Hale, J. Lee, N.K. Terrett, The exploration of macrocycles for drug discovery-an underexploited structural class, Nat. Rev. Drug Discov. 7(2008) 608-624;(c) L.A. Wessjohann, E. Ruijter, D. Garcia-Rivera, W. Brandt, What can a chemist learn from nature's macrocycles?-a brief, conceptual view, Mol. Divers. 9(2005) 171-186;(d) V. Marti-Centelles, M.D. Pandey, M.I. Burguete, S.V. Luis, Macrocyclization reactions:the importance of conformational, configurational, and template-induced preorganization, Chem. Rev. 115(2015) 8736-8834;(e) A.K. Yudin, Macrocycles:lessons from the distant past, recent developments, and future directions, Chem. Sci. 6(2015) 30-49.

    2. [2]

      (a) L. Gentilucci, R. De Marco, L. Cerisoli, Chemical modifications designed to improve peptide stability:incorporation of non-natural amino acids, pseudopeptide bonds, and cyclization, Curr. Pharm. Des. 16(2010) 3185-3203;(b) C. Adessi, C. Soto, Converting a peptide into a drug:strategies to improve stability and bioavailability, Curr. Med. Chem. 9(2002) 963-978;(c) G.M. Pauletti, S. Gangwar, T.J. Siahaan, J. Aube, R.T. Borchardt, Improvement of oral peptide bioavailability:peptidomimetics and prodrug strategies, Adv. Drug Deliv. Rev. 27(1997) 235-256;(d) P.S. Burton, R.A. Conradi, N.F.H. Ho, A.R. Hilgers, R.T. Borchardt, How structural features influence the biomembrane permeability of peptides, J. Pharm. Sci. 85(1996) 1336-1340.

    3. [3]

      (a) J. Mallinson, I. Collins, Macrocycles in new drug discovery, Future Med. Chem. 4(2012) 1409-1438;(b) S. Jiang, Z. Li, K. Ding, P.P. Roller, Recent progress of synthetic studies to peptide and peptidomimetic cyclization, Curr. Org. Chem. 12(2008) 1502-1542;(c) P. Bulet, R. Stocklin, L. Menin, Anti-microbial peptides:from invertebrates to vertebrates, Immunol. Rev. 198(2004) 169-184.

    4. [4]

      C.J White, A.K Yudin. Contemporary strategies for peptide macrocyclization[J]. Nat. Chem, 2011,3:509-524. doi: 10.1038/nchem.1062

    5. [5]

      J.C Collins, K James. Emac-a comparative index for the assessment of macrocyclization efficiency[J]. Med. Chem. Comm, 2012,3:1489-1495.  

    6. [6]

      (a) M. Malesevic, U. Strijowski, D. Bachle, N. Sewald, An improved method for the solution cyclization of peptides under pseudo-high dilution conditions, J. Biotechnol. 112(2004) 73-77;(b) T.S. Lawrence, R. Julius, O. Leonid, L.S. Charles, Organic chemistry on the solid phase. Site-site interactions on functionalized polystyrene, J. Am. Chem. Soc. 99(1977) 626-627;(c) Z. Liu, G.J. Tian, D.X. Wang, An efficient synthesis of cyclopeptides bridged with aliphatic-aryl ether bond, Chin. Chem. Lett. 16(2005) 759-762.

    7. [7]

      (a) V. Castro, H. Rodriguez, F. Albericio, CuAAC:an efficient click chemistry reaction on solid phase, ACS Comb. Sci. 18(2016) 1-14;(b) M. Meldal, C.W. Tornoe, Cu-catalyzed azide-alkyne cycloaddition, Chem. Rev. 108(2008) 2952-3015;(c) J.E. Moses, A.D. Moorhouse, The growing applications of click chemistry, Chem. Soc. Rev. 36(2007) 1249-1262;(d) H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry:diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40(2001) 2004-2021.

    8. [8]

      (a) I.E. Valverde, A. Bauman, C.A. Kluba, et al., 2,3-triazoles as amide bond mimics:triazole scan yields protease-resistant peptidomimetics for tumor targeting, Angew. Chem. Int. Ed. 52(2013) 8957-8960;(b) G.C. Tron, T. Pirali, R.A. Billington, et al., Click chemistry reactions in medicinal chemistry:applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev. 28(2008) 278-308;(c) A. Brik, J. Alexandratos, Y.C. Lin, et al., 2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors, ChemBioChem. 6(2005) 1167-1169.

    9. [9]

      M Roice, I Johannsen, M Meldal. High capacity poly(ethylene glycol) based amino polymers for peptide and organic synthesis[J]. QSAR Comb. Sci, 2004,23:662-673. doi: 10.1002/(ISSN)1611-0218

    10. [10]

      S Punna, J Kuzelka, Q Wang, M.G Finn. Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition[J]. Angew. Chem. Int. Ed, 2005,44:2215-2220. doi: 10.1002/(ISSN)1521-3773

    11. [11]

      R Jagasia, J.M Holub, M Bollinger, K Kirshenbaum, M.G Finn. Peptide cyclization and cyclodimerization by Cu-I-mediated azide-alkyne cycloaddition[J]. J. Org. Chem, 2009,74:2964-2974. doi: 10.1021/jo802097m

    12. [12]

      B.B Metaferia, M Rittler, J.S Gheeya. Synthesis of novel cyclic NGR/RGD peptide analogs via on resin click chemistry[J]. Bioorg. Med. Chem. Lett, 2010,20:7337-7340. doi: 10.1016/j.bmcl.2010.10.064

    13. [13]

      S.Y Qin, X.D Xu, C.S Chen. Supramolecular architectures self-assembled from asymmetrical hetero cyclopeptides[J]. Macromol. Rapid Comm, 2011,32:758-764. doi: 10.1002/marc.v32.9/10

    14. [14]

      V Goncalves, B Gautier, A Regazzetti. On-resin cyclization of peptide ligands of the Vascular Endothelial Growth Factor Receptor 1 by copper(I)-catalyzed 1, 3-dipolar azide-alkyne cycloaddition[J]. Bioorg. Med. Chem. Lett, 2007,17:5590-5594. doi: 10.1016/j.bmcl.2007.07.087

    15. [15]

      R.A Turner, A.G Oliver, R.S Lokey. Click chemistry as a macrocyclization tool in the solid-phase synthesis of small cyclic peptides[J]. Org. Lett, 2007,9:5011-5014. doi: 10.1021/ol702228u

    16. [16]

      S Ingale, P.E Dawson. On resin side-chain cyclization of complex peptides using CuAAC[J]. Org. Lett, 2011,13:2822-2825. doi: 10.1021/ol200775h

    17. [17]

      (a) P.M. Kharkar, M.S. Rehmann, K.M. Skeens, E. Maverakis, A.M. Kloxin, Thiol-ene click hydrogels for therapeutic delivery, ACS Biomater. Sci. Eng. 2(2016) 165-179;(b) J.C. Grim, I.A. Marozas, K.S. Anseth, Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels, J. Control. Release. 219(2015) 95-106;(c) H. Chen, Z.L. Zou, S.L. Tan, et al., Efficient synthesis of water-soluble calix[4]-arenes via thiol-ene "click" chemistry, Chin. Chem. Lett. 24(2013) 367-369;(d) Z.L. Yang, Q.Y. Chen, D. Zhou, Y.L. Bu, Synthesis of functional polymer materials via thiol-ene/yne click chemistry, Prog. Chem. 24(2012) 395-404;(e) M.V. Walter, M. Malkoch, Simplifying the synthesis of dendrimers:accelerated approaches, Chem. Soc. Rev 41(2012) 4593-4609;(f) Q. Liu, Q.Y. Zhang, S.J. Chen, J. Zhou, X.F. Lei, Progress in thiol-ene/yne click chemistry, Chin. J. Org. Chem. 32(2012) 1846-1863;(g) G. Franc, A.K. Kakkar, "Click" methodologies:efficient, simple and greener routes to design dendrimers, Chem. Soc. Rev 39(2010) 1536-1544;(h) M. van Dijk, D.T.S. Rijkers, R.M.J. Liskamp, C.F. van Nostrum, W.E. Hennink, Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies, Bioconjugate Chem. 20(2009) 2001-2016.

    18. [18]

      A.A Aimetti, R.K Shoemaker, C.C Lin, K.S Anseth. On-resin peptide macrocyclization using thiol-ene click chemistry[J]. Chem. Commun, 2010,46:4061-4063. doi: 10.1039/c001375g

    19. [19]

      A.A Aimetti, K.R Feaver, K.S Anseth. Synthesis of cyclic, multivalent Arg-Gly-Asp using sequential thiol-ene/thiol-yne photoreactions[J]. Chem. Commun, 2010,46:5781-5783. doi: 10.1039/c0cc01292k

    20. [20]

      G.C Vougioukalakis, R.H Grubbs. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts[J]. Chem. Rev, 2010,110:1746-1787. doi: 10.1021/cr9002424

    21. [21]

      D.T.S. Rijkers, Synthesis of cyclic peptides and peptidomimetics by metathesis reactions, in:Top Heterocycl. Chem., Springer, Berlin Heidelberg, 2015, pp. 1-54.

    22. [22]

      (a) A.C. Ross, H.Q. Liu, V.R. Pattabiraman, J.C. Vederas, Synthesis of the lantibiotic lactocin S using peptide cyclizations on solid phase, J. Am. Chem. Soc. 132(2010) 462-463;(b) V.R. Pattabiraman, J.L. Stymiest, D.J. Derksen, N.I. Martin, J.C. Vederas, Multiple on-resin olefin metathesis to form ring-expanded analogues of the lantibiotic peptide lacticin 3147 A2, Org. Lett. 9(2007) 699-702.

    23. [23]

      (a) G.J. Hilinski, Y.W. Kim, J. Hong, et al., Stitched a-helical peptides via bis ringclosing metathesis, J. Am. Chem. Soc. 136(2014) 12314-12322;(b) Y.W. Kim, P.S. Kutchukian, G.L. Verdine, Introduction of all-hydrocarbon i,i +3 staples into alpha-helices via ring-closing olefin metathesis, Org. Lett. 12(2010) 3046-3049.

    24. [24]

      F Liu, A Giubellino, P.C Simister. Application of ring-closing metathesis to Grb2 SH3 domain-binding peptides[J]. Biopolymers, 2011,96:780-788. doi: 10.1002/bip.v96.6

    25. [25]

      R Kowalczyk, P.W.R Harris, M.A Brimble. Synthesis and evaluation of disulfide bond mimetics of amylin-(1-8) as agents to treat osteoporosis[J]. Bioorg. Med. Chem, 2012,20:2661-2668. doi: 10.1016/j.bmc.2012.02.030

    26. [26]

      W.J Fang, Y.J Cui, T.F Murray, J.V Aldrich. Design, synthesis, and pharmacological activities of dynorphin A analogues cyclized by ring-closing metathesis[J]. J. Med. Chem, 2009,52:5619-5625. doi: 10.1021/jm900577k

    27. [27]

      (a) Y.B. Feng, K. Burgess, Resin effects in solid phase SNAr and SN2 macrocyclizations, Biotechnol. Bioeng 71(2000) 3-8;(b) Y.B. Feng, Z.C. Wang, S. Jin, K. Burgess, SNAr cyclizations to form cyclic peptidomimetics of beta-turns, J. Am. Chem. Soc. 120(1998) 10768-10769;(c) H.B. Lee, M.C. Zaccaro, M. Pattarawarapan, et al., Syntheses and activities of new C-10 b-turn peptidomimetics, J. Org. Chem. 69(2004) 701-713.

    28. [28]

      E.A Jefferson, S Arakawa, L.B Blyn. New inhibitors of bacterial protein synthesis from a combinatorial library of macrocycles[J]. J. Med. Chem, 2002,45:3430-3439. doi: 10.1021/jm010437x

    29. [29]

      E.A Jefferson, E.E Swayze, S.A Osgood. Antibacterial activity of quinolone-macrocycle conjugates[J]. Bioorg. Med. Chem. Lett, 2003,13:1635-1638. doi: 10.1016/S0960-894X(03)00285-3

    30. [30]

      M Giulianotti, A Nefzi. Efficient approach for the diversity-oriented synthesis of macro-heterocycles on solid-support[J]. Tetrahedron Lett, 2003,44:5307-5309. doi: 10.1016/S0040-4039(03)01219-X

    31. [31]

      Y.B Feng, M Pattarawarapan, Z.C Wang, K Burgess. Solid-phase SN2 macrocyclization reactions to form beta-turn mimics[J]. Org. Lett, 1999,1:121-124. doi: 10.1021/ol990597r

    32. [32]

      S Derbel, K Ghedira, A Nefzi. Parallel synthesis of 19-membered ring macroheterocycles via intramolecular thioether formation[J]. Tetrahedron Lett, 2010,51:3607-3609. doi: 10.1016/j.tetlet.2010.05.029

    33. [33]

      P.J Kaniraj, G Maayan. A facile strategy for the construction of cyclic peptoids under microwave irradiation through a simple substitution reaction,[J]. Org. Lett, 2015,17:2110-2113. doi: 10.1021/acs.orglett.5b00696

    34. [34]

      M Hiroshige, J.R Hauske, P Zhou. Palladium-mediated macrocyclization on solid support and its applications to combinatorial synthesis[J]. J. Am. Chem. Soc, 1995,117:11590-11591. doi: 10.1021/ja00151a029

    35. [35]

      (a) K. Akaji, K. Teruya, M. Akaji, S. Aimoto, Synthesis of cyclic RGD derivatives via solid phase macrocyclization using the Heck reaction, Tetrahedron 57(2001) 2293-2303;(b) K. Akaji, Y. Kiso, Macrocyclization on solid support using heck reaction, Tetrahedron Lett. 38(1997) 5185-5188.

    36. [36]

      G Byk, M Cohen-Ohana, D Raichman. Fast and versatile microwave-assisted intramolecular heck reaction in peptide macrocyclization using microwave energy[J]. Biopolymers, 2006,84:274-282. doi: 10.1002/bip.v84:3

    37. [37]

      A.C Spivey, J McKendrick, R Srikaran, B.A Helm. Solid-phase synthesis of an A-B loop mimetic of the C epsilon 3 domain of human IgE:macrocyclization by sonogashira coupling[J]. J. Org. Chem, 2003,68:1843-1851. doi: 10.1021/jo026693e

    38. [38]

      A Afonso, L Feliu, M Planas. Solid-phase synthesis of biaryl cyclic peptides by borylation and microwave-assisted intramolecular suzuki-miyaura reaction[J]. Tetrahedron, 2011,67:2238-2245. doi: 10.1016/j.tet.2011.01.084

    39. [39]

      A Afonso, O Cusso, L Feliu, M Planas. Solid-phase synthesis of biaryl cyclic peptides containing a 3-aryltyrosine[J]. Eur. J. Org. Chem, 2012,31:6204-6211.  

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    3. [3]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    6. [6]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    7. [7]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    8. [8]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    9. [9]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    10. [10]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    11. [11]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    12. [12]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    13. [13]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    14. [14]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    15. [15]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    16. [16]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    17. [17]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    18. [18]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    19. [19]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    20. [20]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

Metrics
  • PDF Downloads(5)
  • Abstract views(881)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return