Citation: Zheng Hai-Rong, Niu Li-Ya, Chen Yu-Zhe, Wu Li-Zhu, Tung Chen-Ho, Yang Qing-Zheng. Cascade reaction-based fluorescent probe for detection of H2S with the assistance of CTAB micelles[J]. Chinese Chemical Letters, ;2016, 27(12): 1793-1796. doi: 10.1016/j.cclet.2016.04.023 shu

Cascade reaction-based fluorescent probe for detection of H2S with the assistance of CTAB micelles

  • Corresponding author: Niu Li-Ya, niuly@mail.ipc.ac.cn
  • Received Date: 29 March 2016
    Revised Date: 25 April 2016
    Accepted Date: 28 April 2016
    Available Online: 18 December 2016

Figures(6)

  • We report a turn-on fluorescent probe for H2S through a cascade reaction using a new trap group 4-(bromomethyl)benzoate, based on excited-state intramolecular proton transfer (ESIPT) sensing mechanism. The probe showed good selectivity and high sensitivity towards H2S and it was capable of detecting and imaging H2S in living HeLa cells, indicating its potential biological applications.
  • 加载中
    1. [1]

      C. Szabó. Hydrogen sulphide and its therapeutic potential[J]. Nat. Rev. Drug. Discov., 2007,6:917-935. doi: 10.1038/nrd2425

    2. [2]

      M. Ishigami, K. Hiraki, K. Umemura. A source of hydrogen sulfide and a mechanism of its release in the brain,[J]. Antioxid. Redox Signal., 2009,11:205-214. doi: 10.1089/ars.2008.2132

    3. [3]

      G.A. Benavides, G.L. Squadrito, R.W. Mills. Hydrogen sulfide mediates the vasoactivity of garlic[J]. Proc. Natl. Acad. Sci. U.S.A., 2007,104:17977-17982. doi: 10.1073/pnas.0705710104

    4. [4]

      S. Singh, D. Padovani, R.A. Leslie, T. Chiku, R. Banerjee. Relative contributions of cystathionine b-synthase and g-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions[J]. J. Biol. Chem., 2009,284:22457-22466. doi: 10.1074/jbc.M109.010868

    5. [5]

      S. Singh, R. Banerjee. PLP-dependent H2S biogenesis[J]. Biochim. Biophys. Acta, 2011,1814:1518-1527. doi: 10.1016/j.bbapap.2011.02.004

    6. [6]

      K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura. Brain hydrogen sulfide is severely decreased in Alzheimer's disease[J]. Biochem. Biophys. Res. Commun., 2002,293:1485-1488. doi: 10.1016/S0006-291X(02)00422-9

    7. [7]

      P. Kamoun, M.-C. Belardinelli, A. Chabli, K. Lallouchi, B. Chadefaux-Vekemans. Endogenous hydrogen sulfide overproduction in Down syndrome[J]. Am. J. Med. Genet. A, 2003,116:310-311.

    8. [8]

      W. Yang, G.D. Yang, X.M. Jia, L.Y. Wu, R. Wang. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms[J]. J. Physiol. (Lond.), 2005,569:519-531. doi: 10.1113/jphysiol.2005.097642

    9. [9]

      S. Fiorucci, E. Antonelli, A. Mencarelli. The third gas:H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis[J]. Hepatology, 2005,42:539-548. doi: 10.1002/(ISSN)1527-3350

    10. [10]

      L.M. Siegel. A direct microdetermination for sulfide[J]. Anal. Biochem., 1965,11:126-122. doi: 10.1016/0003-2697(65)90051-5

    11. [11]

      E. Fischer. Formation of methylene blue in response to hydrogen sulfide[J]. Ber. Dtsch. Chem. Ges., 1983,16:2234-2236.

    12. [12]

      U. Hannestad, S. Margheri, B. Sö rbo. A sensitive gas chromatographic method for determination of protein associated sulfur[J]. Anal. Biochem., 1989,178:394-398. doi: 10.1016/0003-2697(89)90659-3

    13. [13]

      J. Furne, A. Saeed, M.D. Levitt. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values[J]. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008,295:1479-1485. doi: 10.1152/ajpregu.90566.2008

    14. [14]

      L.Y. Niu, Y.Z. Chen, H.R. Zheng. Design strategies of fluorescent probes for selective detection among biothiols[J]. Chem. Soc. Rev., 2015,44:6143-6160. doi: 10.1039/C5CS00152H

    15. [15]

      X. Zhou, S. Lee, Z.C. Xu, J. Yoon. Recent progress on the development of chemosensors for gases[J]. Chem. Rev., 2015,115:7944-8000. doi: 10.1021/cr500567r

    16. [16]

      L.Y. Niu, Y.S. Guan, Y.Z. Chen. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine[J]. J. Am. Chem. Soc., 2012,134:18928-18931. doi: 10.1021/ja309079f

    17. [17]

      V.S. Lin, C.J. Chang. Fluorescent probes for sensing and imaging biological hydrogen sulfide[J]. Curr. Opin. Chem. Biol., 2012,16:595-601. doi: 10.1016/j.cbpa.2012.07.014

    18. [18]

      C.C. Zhao, X.L. Zhang, K.B. Li. Fö rster resonance energy transfer switchable self-assembled micellar nanoprobe:ratiometric fluorescent trapping of endogenous H2S generation via fluvastatin-stimulated upregulation[J]. J. Am. Chem. Soc., 2015,137:8490-8498. doi: 10.1021/jacs.5b03248

    19. [19]

      X. Wang, J. Sun, W.H. Zhang. A near-infrared ratiometric fluorescent probe for rapid and highly sensitive imaging of endogenous hydrogen sulfide in living cells[J]. Chem. Sci., 2013,4:2551-2556. doi: 10.1039/c3sc50369k

    20. [20]

      Z.S. Wu, Y.L. Feng, B. Geng, J.Y. Liu, X.J. Tang. Fluorogenic sensing of H2S in blood and living cells via reduction of aromatic dialkylamino N-oxide[J]. RSC Adv., 2014,4:30398-30401. doi: 10.1039/C4RA03677H

    21. [21]

      H.J. Peng, Y.F. Cheng, C.F. Dai. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood[J]. Angew. Chem. Int. Ed., 2011,50:9672-9675. doi: 10.1002/anie.201104236

    22. [22]

      S. Chen, Z.J. Chen, W. Ren, H.W. Ai. Reaction-based genetically encoded fluorescent hydrogen sulfide sensors[J]. J. Am. Chem. Soc., 2012,134:9589-9592. doi: 10.1021/ja303261d

    23. [23]

      K.J. Wu, G.Q. Li, Y. Li, L.X. Dai, S.L. You. Reaction-based genetically encoded fluorescent hydrogen sulfide sensors[J]. Chem. Commun., 2011,47:493-495. doi: 10.1039/C0CC01769H

    24. [24]

      C.R. Liu, J. Pan, S. Li. Capture and visualization of hydrogen sulfide by a fluorescent probe[J]. Angew. Chem. Int. Ed., 2011,50:10327-10329. doi: 10.1002/anie.201104305

    25. [25]

      C.R. Liu, B. Peng, S. Li. Reaction based fluorescent probes for hydrogen sulfide[J]. Org. Lett., 2012,14:2184-2187. doi: 10.1021/ol3008183

    26. [26]

      K. Sasakura, K. Hanaoka, N. Shibuya. Development of a highly selective fluorescence probe for hydrogen sulfide[J]. J. Am. Chem. Soc., 2011,133:18003-18005. doi: 10.1021/ja207851s

    27. [27]

      F.P. Hou, L. Huang, P.X. Xi. A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells[J]. Inorg. Chem., 2012,51:2454-2460. doi: 10.1021/ic2024082

    28. [28]

      X.W. Cao, W.Y. Lin, K.B. Zheng, L.W. He. A near-infrared fluorescent turn-on probe for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of dinitrophenyl ether[J]. Chem. Commun., 2012,48:10529-10531. doi: 10.1039/c2cc34031c

    29. [29]

      T.Y. Liu, Z.C. Xu, D.R. Spring, J.N. Cui. A lysosome-targetable fluorescent probe for imaging hydrogen sulfide in living cells[J]. Org. Lett., 2013,15:2310-2313. doi: 10.1021/ol400973v

    30. [30]

      S.D. Liu, L.W. Zhang, P.P. Zhou. HBT-based chemosensors for the detection of fluoride through deprotonation process:experimental and DFT studies[J]. RSC Adv., 2015,5:19983-19988. doi: 10.1039/C4RA13532F

    31. [31]

      L.H. Geng, X.F. Yang, Y.G. Zhong, Z. Li, H. Li. "Quinone-phenol" transduction activated excited-state intramolecular proton transfer:a new strategy toward ratiometric fluorescent probe for sulfite in living cells[J]. Dyes Pigm., 2015,120:213-219. doi: 10.1016/j.dyepig.2015.04.016

    32. [32]

      S. Sahana, G. Mishra, S. Sivakumar, P.K. Bharadwaj. A 2-(2[Prime or minute]-hydroxyphenyl)benzothiazole (HBT)-quinoline conjugate:a highly specific fluorescent probe for Hg2+ based on ESIPT and its application in bioimaging[J]. Dalton Trans., 2015,44:20139-20146. doi: 10.1039/C5DT03719K

    33. [33]

      S. Goswami, A. Manna, S. Paul. FRET based ‘red-switch’ for Al3+ over ESIPT based ‘green-switch’ for Zn2+:dual channel detection with live-cell imaging on a dyad platform[J]. RSC Adv., 2014,4:34572-34576. doi: 10.1039/C4RA05714G

    34. [34]

      X.F. Yang, Q. Huang, Y.G. Zhong. A dual emission fluorescent probe enables simultaneous detection of glutathione and cysteine/homocysteine[J]. Chem. Sci., 2014,5:2177-2183. doi: 10.1039/c4sc00308j

    35. [35]

      Q.S. Liu, C.L. Zhang, X.Q. Wang. Benzothiazole-pyimidine-based BF2 complex for selective detection of cysteine[J]. Chem. Asian J., 2016,11:202-206. doi: 10.1002/asia.v11.2

    36. [36]

      C.C. Zhao, X.A. Li, F.Y. Wang. Target-triggered NIR emission with a large stokes shift for the detection and imaging of cysteine in living cells[J]. Chem. Asian J., 2014,9:1777-1781. doi: 10.1002/asia.v9.7

    37. [37]

      S. Goswami, S. Das, K. Aich. A chemodosimeter for the ratiometric detection of hydrazine based on return of ESIPT and its application in live-cell imaging[J]. Org. Lett., 2013,15:5412-5415. doi: 10.1021/ol4026759

    38. [38]

      D.P. Murale, H. Kim, W.S. Choi, D.G. Churchill. Highly selective excited state intramolecular proton transfer (ESIPT)-based superoxide probing[J]. Org. Lett., 2013,15:3946-3949. doi: 10.1021/ol4017222

    39. [39]

      S.M. Aly, A. Usman, M. AlZayer. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(20-Hydroxyphenyl)-Benzothiazole[J]. J. Phys. Chem. B, 2015,119:2596-2603. doi: 10.1021/jp508777h

    40. [40]

      A.R. Lippert, E.J. New, C.J. Chang. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells[J]. J. Am. Chem. Soc., 2011,133:10078-10080. doi: 10.1021/ja203661j

  • 加载中
    1. [1]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    2. [2]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    3. [3]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    4. [4]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    5. [5]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    6. [6]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    7. [7]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    8. [8]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    9. [9]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    10. [10]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    11. [11]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    12. [12]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    13. [13]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    14. [14]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    15. [15]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    16. [16]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    17. [17]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    18. [18]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    19. [19]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    20. [20]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

Metrics
  • PDF Downloads(3)
  • Abstract views(785)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return