Cascade reaction-based fluorescent probe for detection of H2S with the assistance of CTAB micelles
- Corresponding author: Niu Li-Ya, niuly@mail.ipc.ac.cn
Citation:
Zheng Hai-Rong, Niu Li-Ya, Chen Yu-Zhe, Wu Li-Zhu, Tung Chen-Ho, Yang Qing-Zheng. Cascade reaction-based fluorescent probe for detection of H2S with the assistance of CTAB micelles[J]. Chinese Chemical Letters,
;2016, 27(12): 1793-1796.
doi:
10.1016/j.cclet.2016.04.023
C. Szabó. Hydrogen sulphide and its therapeutic potential[J]. Nat. Rev. Drug. Discov., 2007,6:917-935. doi: 10.1038/nrd2425
M. Ishigami, K. Hiraki, K. Umemura. A source of hydrogen sulfide and a mechanism of its release in the brain,[J]. Antioxid. Redox Signal., 2009,11:205-214. doi: 10.1089/ars.2008.2132
G.A. Benavides, G.L. Squadrito, R.W. Mills. Hydrogen sulfide mediates the vasoactivity of garlic[J]. Proc. Natl. Acad. Sci. U.S.A., 2007,104:17977-17982. doi: 10.1073/pnas.0705710104
S. Singh, D. Padovani, R.A. Leslie, T. Chiku, R. Banerjee. Relative contributions of cystathionine b-synthase and g-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions[J]. J. Biol. Chem., 2009,284:22457-22466. doi: 10.1074/jbc.M109.010868
S. Singh, R. Banerjee. PLP-dependent H2S biogenesis[J]. Biochim. Biophys. Acta, 2011,1814:1518-1527. doi: 10.1016/j.bbapap.2011.02.004
K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura. Brain hydrogen sulfide is severely decreased in Alzheimer's disease[J]. Biochem. Biophys. Res. Commun., 2002,293:1485-1488. doi: 10.1016/S0006-291X(02)00422-9
P. Kamoun, M.-C. Belardinelli, A. Chabli, K. Lallouchi, B. Chadefaux-Vekemans. Endogenous hydrogen sulfide overproduction in Down syndrome[J]. Am. J. Med. Genet. A, 2003,116:310-311.
W. Yang, G.D. Yang, X.M. Jia, L.Y. Wu, R. Wang. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms[J]. J. Physiol. (Lond.), 2005,569:519-531. doi: 10.1113/jphysiol.2005.097642
S. Fiorucci, E. Antonelli, A. Mencarelli. The third gas:H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis[J]. Hepatology, 2005,42:539-548. doi: 10.1002/(ISSN)1527-3350
L.M. Siegel. A direct microdetermination for sulfide[J]. Anal. Biochem., 1965,11:126-122. doi: 10.1016/0003-2697(65)90051-5
E. Fischer. Formation of methylene blue in response to hydrogen sulfide[J]. Ber. Dtsch. Chem. Ges., 1983,16:2234-2236.
U. Hannestad, S. Margheri, B. Sö rbo. A sensitive gas chromatographic method for determination of protein associated sulfur[J]. Anal. Biochem., 1989,178:394-398. doi: 10.1016/0003-2697(89)90659-3
J. Furne, A. Saeed, M.D. Levitt. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values[J]. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008,295:1479-1485. doi: 10.1152/ajpregu.90566.2008
L.Y. Niu, Y.Z. Chen, H.R. Zheng. Design strategies of fluorescent probes for selective detection among biothiols[J]. Chem. Soc. Rev., 2015,44:6143-6160. doi: 10.1039/C5CS00152H
X. Zhou, S. Lee, Z.C. Xu, J. Yoon. Recent progress on the development of chemosensors for gases[J]. Chem. Rev., 2015,115:7944-8000. doi: 10.1021/cr500567r
L.Y. Niu, Y.S. Guan, Y.Z. Chen. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine[J]. J. Am. Chem. Soc., 2012,134:18928-18931. doi: 10.1021/ja309079f
V.S. Lin, C.J. Chang. Fluorescent probes for sensing and imaging biological hydrogen sulfide[J]. Curr. Opin. Chem. Biol., 2012,16:595-601. doi: 10.1016/j.cbpa.2012.07.014
C.C. Zhao, X.L. Zhang, K.B. Li. Fö rster resonance energy transfer switchable self-assembled micellar nanoprobe:ratiometric fluorescent trapping of endogenous H2S generation via fluvastatin-stimulated upregulation[J]. J. Am. Chem. Soc., 2015,137:8490-8498. doi: 10.1021/jacs.5b03248
X. Wang, J. Sun, W.H. Zhang. A near-infrared ratiometric fluorescent probe for rapid and highly sensitive imaging of endogenous hydrogen sulfide in living cells[J]. Chem. Sci., 2013,4:2551-2556. doi: 10.1039/c3sc50369k
Z.S. Wu, Y.L. Feng, B. Geng, J.Y. Liu, X.J. Tang. Fluorogenic sensing of H2S in blood and living cells via reduction of aromatic dialkylamino N-oxide[J]. RSC Adv., 2014,4:30398-30401. doi: 10.1039/C4RA03677H
H.J. Peng, Y.F. Cheng, C.F. Dai. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood[J]. Angew. Chem. Int. Ed., 2011,50:9672-9675. doi: 10.1002/anie.201104236
S. Chen, Z.J. Chen, W. Ren, H.W. Ai. Reaction-based genetically encoded fluorescent hydrogen sulfide sensors[J]. J. Am. Chem. Soc., 2012,134:9589-9592. doi: 10.1021/ja303261d
K.J. Wu, G.Q. Li, Y. Li, L.X. Dai, S.L. You. Reaction-based genetically encoded fluorescent hydrogen sulfide sensors[J]. Chem. Commun., 2011,47:493-495. doi: 10.1039/C0CC01769H
C.R. Liu, J. Pan, S. Li. Capture and visualization of hydrogen sulfide by a fluorescent probe[J]. Angew. Chem. Int. Ed., 2011,50:10327-10329. doi: 10.1002/anie.201104305
C.R. Liu, B. Peng, S. Li. Reaction based fluorescent probes for hydrogen sulfide[J]. Org. Lett., 2012,14:2184-2187. doi: 10.1021/ol3008183
K. Sasakura, K. Hanaoka, N. Shibuya. Development of a highly selective fluorescence probe for hydrogen sulfide[J]. J. Am. Chem. Soc., 2011,133:18003-18005. doi: 10.1021/ja207851s
F.P. Hou, L. Huang, P.X. Xi. A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells[J]. Inorg. Chem., 2012,51:2454-2460. doi: 10.1021/ic2024082
X.W. Cao, W.Y. Lin, K.B. Zheng, L.W. He. A near-infrared fluorescent turn-on probe for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of dinitrophenyl ether[J]. Chem. Commun., 2012,48:10529-10531. doi: 10.1039/c2cc34031c
T.Y. Liu, Z.C. Xu, D.R. Spring, J.N. Cui. A lysosome-targetable fluorescent probe for imaging hydrogen sulfide in living cells[J]. Org. Lett., 2013,15:2310-2313. doi: 10.1021/ol400973v
S.D. Liu, L.W. Zhang, P.P. Zhou. HBT-based chemosensors for the detection of fluoride through deprotonation process:experimental and DFT studies[J]. RSC Adv., 2015,5:19983-19988. doi: 10.1039/C4RA13532F
L.H. Geng, X.F. Yang, Y.G. Zhong, Z. Li, H. Li. "Quinone-phenol" transduction activated excited-state intramolecular proton transfer:a new strategy toward ratiometric fluorescent probe for sulfite in living cells[J]. Dyes Pigm., 2015,120:213-219. doi: 10.1016/j.dyepig.2015.04.016
S. Sahana, G. Mishra, S. Sivakumar, P.K. Bharadwaj. A 2-(2[Prime or minute]-hydroxyphenyl)benzothiazole (HBT)-quinoline conjugate:a highly specific fluorescent probe for Hg2+ based on ESIPT and its application in bioimaging[J]. Dalton Trans., 2015,44:20139-20146. doi: 10.1039/C5DT03719K
S. Goswami, A. Manna, S. Paul. FRET based ‘red-switch’ for Al3+ over ESIPT based ‘green-switch’ for Zn2+:dual channel detection with live-cell imaging on a dyad platform[J]. RSC Adv., 2014,4:34572-34576. doi: 10.1039/C4RA05714G
X.F. Yang, Q. Huang, Y.G. Zhong. A dual emission fluorescent probe enables simultaneous detection of glutathione and cysteine/homocysteine[J]. Chem. Sci., 2014,5:2177-2183. doi: 10.1039/c4sc00308j
Q.S. Liu, C.L. Zhang, X.Q. Wang. Benzothiazole-pyimidine-based BF2 complex for selective detection of cysteine[J]. Chem. Asian J., 2016,11:202-206. doi: 10.1002/asia.v11.2
C.C. Zhao, X.A. Li, F.Y. Wang. Target-triggered NIR emission with a large stokes shift for the detection and imaging of cysteine in living cells[J]. Chem. Asian J., 2014,9:1777-1781. doi: 10.1002/asia.v9.7
S. Goswami, S. Das, K. Aich. A chemodosimeter for the ratiometric detection of hydrazine based on return of ESIPT and its application in live-cell imaging[J]. Org. Lett., 2013,15:5412-5415. doi: 10.1021/ol4026759
D.P. Murale, H. Kim, W.S. Choi, D.G. Churchill. Highly selective excited state intramolecular proton transfer (ESIPT)-based superoxide probing[J]. Org. Lett., 2013,15:3946-3949. doi: 10.1021/ol4017222
S.M. Aly, A. Usman, M. AlZayer. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(20-Hydroxyphenyl)-Benzothiazole[J]. J. Phys. Chem. B, 2015,119:2596-2603. doi: 10.1021/jp508777h
A.R. Lippert, E.J. New, C.J. Chang. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells[J]. J. Am. Chem. Soc., 2011,133:10078-10080. doi: 10.1021/ja203661j
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
Haixian Ren , Yuting Du , Xiaojing Yang , Fangjun Huo , Le Zhang , Caixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Tao Liu , Xuwei Han , Xueyi Sun , Weijie Zhang , Ke Gao , Runan Min , Yuting Tian , Caixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
Fan Zheng , Runsha Xiao , Shuai Huang , Zhikang Chen , Chen Lai , Anyao Bi , Heying Yao , Xueping Feng , Zihua Chen , Wenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876
Zhixiao Xiong , Shanni Qiu , Yuyu Wang , Houna Duan , Yi Xiao , Yufang Xu , Weiping Zhu , Xuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
Lei Shen , Hongmei Liu , Ming Jin , Jinchao Zhang , Caixia Yin , Shuxiang Wang , Yutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572
Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603
Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Hui Zhang , Rong Feng , Wanyi Yu , Hongbei Wei , Tianhong Wu , Peng Zhang , Wenhai Bian , Xin Li , Di Gao , Guojun Weng , Zhe Yang , Tony D. James , Xiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012
Tong Zhang , Chao Sun , Shubin Yang , Zimin Cai , Sifeng Zhu , Wendian Liu , Yun Luan , Cheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248