Citation: Yu Zhi-Wei, Gao Shu-Xi, Xu Kai, Zhang You-Xiong, Peng Jun, Chen Ming-Cai. Synthesis and characterization of silsesquioxane-cored star-shaped hybrid polymer via "grafting from" RAFT polymerization[J]. Chinese Chemical Letters, ;2016, 27(11): 1696-1700. doi: 10.1016/j.cclet.2016.04.018 shu

Synthesis and characterization of silsesquioxane-cored star-shaped hybrid polymer via "grafting from" RAFT polymerization

  • Corresponding author: Xu Kai, xk@gic.ac.cn
  • Received Date: 23 February 2016
    Revised Date: 5 April 2016
    Accepted Date: 14 April 2016
    Available Online: 10 November 2016

Figures(4)

  • Organic/inorganic hybrid polymers have been widely studied for their potential use in nanocontainers and nanocarriers.In this article, one star-shaped hybrid polymer, polyhedral oligomeric silsesquioxane (POSS) grafted poly (N, N-(dimethylamino) ethyl methacrylate)(POSS-g-PDMA), was synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT).The pH stimuli-responsive character of POSS-g-PDMA in aqueous solution were also studied.
  • 加载中
    1. [1]

      Cai H.L., Xu K., Liu X., Fu Z.E., Chen M.C.. A facile synthesis of octa (carboxyphenyl) silsesquioxane[J]. Dalton Trans., 2012,41:6919-6921. doi: 10.1039/c2dt30378g

    2. [2]

      Choi S.S., Lee A.S., Lee H.S.. Synthesis and characterization of ladder-like structured polysilsesquioxane with carbazole group[J]. Macromol. Res., 2011,19:261-265. doi: 10.1007/s13233-011-0304-3

    3. [3]

      Gnanasekaran D., Madhavan K., Reddy B.S.R.. Developments of polyhedral oligomeric silsesquioxanes (POSS), POSS nanocomposites and their applications: a review[J]. J. Sci. Ind. Res., 2009,68:437-464.  

    4. [4]

      Lee A.S.S., Choi S.S., Baek K.Y., Hwang S.S.. Thiol-ene photopolymerization of welldefined hybrid graft polymers from a ladder-like polysilsesquioxane[J]. Macromol. Res., 2015,23:60-66. doi: 10.1007/s13233-015-3004-6

    5. [5]

      Loy D.A., Small J.H., J. K.. Shea, Nanostructure in Polysilsesquioxanes[J]. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2005,4661.

    6. [6]

      Skaria S., Schricker S.R.. Synthesis and characterization of inorganic-organic hybrid materials derived from polysilsesquioxanes (POSS)[J]. J. Macromol. Sci. Part A: Pure Appl. Chem., 2010,47:381-391. doi: 10.1080/10601321003659440

    7. [7]

      Zhang W.A., Müller A.H.E.. Architecture, self-assembly and properties of welldefined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS)[J]. Prog. Polym. Sci., 2013,38:1121-1162. doi: 10.1016/j.progpolymsci.2013.03.002

    8. [8]

      Tanaka K., Chujo Y.. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS)[J]. J. Mater. Chem., 2012,22:1733-1746. doi: 10.1039/C1JM14231C

    9. [9]

      Tanaka K., Adachi S., Chujo Y.. Structure-property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers[J]. J. Polym. Sci. Part A: Polym. Chem., 2009,47:5690-5697. doi: 10.1002/pola.v47:21

    10. [10]

      Wu J., Mather P.T.. POSS polymers: physical properties and biomaterials applications[J]. Polym. Rev., 2009,49:25-63. doi: 10.1080/15583720802656237

    11. [11]

      Zhang W.C., Li X.M., Guo X.Y., Yang R.J.. Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPOPOSS)/polycarbonate composites[J]. Polym. Degrad. Stab., 2010,95:2541-2546. doi: 10.1016/j.polymdegradstab.2010.07.036

    12. [12]

      Franczyk A., He H.K., Burdyńska J.. Synthesis of high molecular weight polymethacrylates with polyhedral oligomeric silsesquioxane moieties by atom transfer radical polymerization[J]. ACS Macro Lett., 2014,3:799-802. doi: 10.1021/mz5003799

    13. [13]

      Zhang W.A., Liu L., Zhuang X.D.. Synthesis and self-assembly of tadpoleshaped organic/inorganic hybrid poly (N-isopropylacrylamide) containing polyhedral oligomeric silsesquioxane via RAFT polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 2008,46:7049-7061. doi: 10.1002/pola.v46:21

    14. [14]

      Ye Y.S., Shen W.C., Tseng C.Y.. Versatile grafting approaches to star-shaped POSS-containing hybrid polymers using RAFT polymerization and click chemistry[J]. Chem. Commun., 2011,47:10656-10658. doi: 10.1039/c1cc13412d

    15. [15]

      Zhang W.A., Müller A.H.E.. A "click chemistry" approach to linear and star-shaped telechelic POSS-containing hybrid polymers[J]. Macromolecules, 2010,43:3148-3152. doi: 10.1021/ma902830f

    16. [16]

      Asuncion M.Z., Ronchi M., Abu-Seir H., Laine R.M.. Synthesis, functionalization and properties of incompletely condensed "half cube" silsesquioxanes as a potential route to nanoscale Janus particles[J]. C.R. Chim., 2010,13:270-281. doi: 10.1016/j.crci.2009.10.007

    17. [17]

      Mya K.Y., Gose H.B., Pretsch T., Bothe M., He C.B.. Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance[J]. J. Mater. Chem., 2011,21:4827-4836. doi: 10.1039/c0jm04459h

    18. [18]

      Wang X., Ervithayasuporn V., Zhang Y.H., Kawakami Y.. Reversible self-assembly of dendrimer based on polyhedral oligomeric silsesquioxanes (POSS)[J]. Chem. Commun., 2011,47:1282-1284. doi: 10.1039/C0CC03359F

    19. [19]

      Duong H.T.T., Jung K., Kutty S.K.. Nanoparticle (star polymer) delivery of nitric oxide effectively negates pseudomonas aeruginosa biofilm formation[J]. Biomacromolecules, 2014,15:2583-2589. doi: 10.1021/bm500422v

    20. [20]

      Fischer C.S., Jenewein C., Mecking S.. Conjugated star polymers from multidirectional Suzuki-Miyaura polymerization for live cell imaging[J]. Macromolecules, 2015,48:483-491. doi: 10.1021/ma502294n

    21. [21]

      Lee C.C., MacKay J.A., Fréchet J.M.J., Szoka F.C.. Designing dendrimers for biological applications[J]. Nat. Biotechnol., 2005,23:1517-1526. doi: 10.1038/nbt1171

    22. [22]

      Zhou Y., Li H., Yang Y.W.. Controlled drug delivery systems based on calixarenes[J]. Chin. Chem. Lett., 2015,26:825-828. doi: 10.1016/j.cclet.2015.01.038

    23. [23]

      Loh X.J., Zhang Z.X., Mya K.Y.. Efficient gene delivery with paclitaxel-loaded DNA-hybrid polyplexes based on cationic polyhedral oligomeric silsesquioxanes[J]. J. Mater. Chem., 2010,20:10634-10642. doi: 10.1039/c0jm01461c

    24. [24]

      Wang F., Bronich T.K., Kabanov A.V., Rauh R.D., Roovers J.. Synthesis and evaluation of a star amphiphilic block copolymer from poly (ε-caprolactone) and poly (ethylene glycol) as a potential drug delivery carrier[J]. Bioconjugate Chem., 2005,16:397-405. doi: 10.1021/bc049784m

    25. [25]

      Hirai T., Leolukman M., Liu C.C.. One-step direct-patterning template utilizing self-assembly of POSS-containing block copolymers[J]. Adv. Mater., 2009,21:4334-4338. doi: 10.1002/adma.v21:43

    26. [26]

      Jiang B.B., Tao W., Lu X.. A POSS-based supramolecular amphiphile and its hierarchicalself-assemblybehaviors[J]. Macromol.RapidCommun, 2012,33:767-772.

    27. [27]

      Zhang W.A., Fang B., Walther A., Müller A.H.E.. Synthesis via RAFT polymerization of tadpole-shaped organic/inorganic hybrid poly (acrylic acid) containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water[J]. Macromolecules, 2009,42:2563-2569. doi: 10.1021/ma802803d

    28. [28]

      Zhang W.A., Yuan J.Y., Weiss S.. Telechelic hybrid poly (acrylic acid) s containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water[J]. Macromolecules, 2011,44:6891-6898. doi: 10.1021/ma201152t

    29. [29]

      Wu W., Wang W.G., Li J.S.. Star polymers: advances in biomedical applications[J]. Prog. Polym. Sci., 2015,46:55-85. doi: 10.1016/j.progpolymsci.2015.02.002

    30. [30]

      Cui Y.Y., Ren Y.E., Liu X.X.. Synthesis of methyl methacrylate star-branched polymer with divinylbenzene as a linking agent via controlled/living photopolymerization[J]. Chin. Chem. Lett., 2012,23:985-988. doi: 10.1016/j.cclet.2012.06.026

    31. [31]

      Li J.B., Ren J., Cao Y., Yuan W.Z.. Synthesis of biodegradable pentaarmed star-block copolymersviaanasymmetricBIS-TRIScorebycombinationofROPandRAFT:from star architectures to double responsive micelles[J]. Polymer, 2010,51:1301-1310. doi: 10.1016/j.polymer.2010.01.037

    32. [32]

      Sheiko S.S., Sumerlin B.S., Matyjaszewski K.. Cylindrical molecular brushes: synthesis, characterization, and properties[J]. Prog. Polym. Sci., 2008,33:759-785. doi: 10.1016/j.progpolymsci.2008.05.001

    33. [33]

      Stenzel M.H., Davis T.P.. Star polymer synthesis using trithiocarbonate functional b-cyclodextrin cores (reversible addition-fragmentation chain-transfer polymerization)[J]. J. Polym. Sci. Part A: Polym. Chem., 2002,40:4498-4512. doi: 10.1002/(ISSN)1099-0518

    34. [34]

      Xu X.W., Huang J.L.. Synthesis and characterization of amphiphilic copolymer of linear poly (ethylene oxide) linked with [poly (styrene-co-2-hydroxyethyl methacrylate)-graft-poly (e-caprolactone)] using sequential controlled polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 2006,44:467-476. doi: 10.1002/(ISSN)1099-0518

    35. [35]

      Xing Y.X., Peng J., Xu K.. Polymerizable molecular silsesquioxane cage armored hybrid microcapsules with in situ shell functionalization[J]. Chem. Eur. J., 2016,22:2114-2126. doi: 10.1002/chem.201504473

  • 加载中
    1. [1]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    2. [2]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    3. [3]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    4. [4]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    5. [5]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    6. [6]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    7. [7]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    8. [8]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    9. [9]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    10. [10]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    11. [11]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    12. [12]

      Yu PengYue WangTian-Jiao ChenJing-Jing ChenJin-Ling YangTing GongPing Zhu . A fungal CYP from Beauveria bassiana with promiscuous steroid hydroxylation capabilities. Chinese Chemical Letters, 2024, 35(5): 108818-. doi: 10.1016/j.cclet.2023.108818

    13. [13]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    14. [14]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    15. [15]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    16. [16]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    17. [17]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    18. [18]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    19. [19]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    20. [20]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

Metrics
  • PDF Downloads(2)
  • Abstract views(719)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return