Citation: Mou Xian-Bo, Ali Zeeshan, Li Bo, Li Tao-Tao, Yi Huan, Dong Hong-Ming, He Nong-Yue, Deng Yan, Zeng Xin. Multiple genotyping based on multiplex PCR and microarray[J]. Chinese Chemical Letters, ;2016, 27(11): 1661-1665. doi: 10.1016/j.cclet.2016.04.005 shu

Multiple genotyping based on multiplex PCR and microarray

Figures(6)

  • The genetic variability has obtained more and more attention in the process of diagnosis and treatment of tumors.Herein, we have described a multiple genotyping method based on magnetic enrichmentmultiplex PCR (MEM-PCR) and microarray technology.Monodisperse magnetic beads were fabricated and modified with streptavidin.Four loci on two genes (M235T and A-6G loci on AGT gene, A1298C and C677T loci on MTHFR gene) were selected to study single nucleotide polymorphisms (SNP).Target sequences of these SNP loci were amplified using Cy3-labeled primers through multiplex PCR in one tube after the templates were enriched and purified by functional magnetic beads (MB).Four pairs of NH2-labeled probes, corresponding to each locus, were fixed on CHO-modified glass slide by covalent binding.Hybridization between target sequences and probes was performed under suitable conditions.The spotting locations on microarray and the ratio of fluorescence intensity, produced by different loci, were used to distinguish the SNP genotypes.Finally, three of gastric cancer samples were collected and genotyping analysis for these four SNP loci was carried out successfully simultaneously by this method.
  • 加载中
    1. [1]

      Gunderson K.L., Steemers F.J., Lee G., Mendoza L.G., Chee M.S.. A genome-wide scalable SNP genotyping assay using microarray technology[J]. Nat. Genet., 2005,37:549-554. doi: 10.1038/ng1547

    2. [2]

      Sakamoto H., Yoshimura K., Saeki N.. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer[J]. Nat. Genet., 2008,40:730-740. doi: 10.1038/ng.152

    3. [3]

      Hu Z.B., Liang J., Wang Z.W.. Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women[J]. Hum. Mutat., 2009,30:79-84. doi: 10.1002/humu.v30:1

    4. [4]

      Madeira K.P., Daltoé R.D., Sirtoli G.M.. Estrogen receptor alpha (ERS1) SNPs c454-397T>C (PvuⅡ) and c454-351A>G (XbaⅠ) are risk biomarkers for breast cancer development[J]. Mol. Biol. Rep., 2014,41:5459-5466. doi: 10.1007/s11033-014-3419-8

    5. [5]

      Sun X.G., Kaltenbronn K.M., Steinberg T.H., Blumer K.J.. RGS2 is a mediator of nitric oxide action on blood pressure and vasoconstrictor signaling[J]. Mol. Pharmacol., 2005,67:631-639.  

    6. [6]

      Kamangar F., Abnet C.C., Hutchinson A.A.. Polymorphisms in inflammationrelated genes and risk of gastric cancer (Finland)[J]. Cancer Cause Control, 2006,17:117-125. doi: 10.1007/s10552-005-0439-7

    7. [7]

      Shi Y.Y., Hu Z.B., Wu C.. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1[J]. Nat. Genet., 2011,43:1215-1219. doi: 10.1038/ng.978

    8. [8]

      Kogo R., Mimori K., Tanaka F., Komune S., Mori M.. Clinical significance of miR-146a in gastric cancer cases[J]. Clin. Cancer Res., 2011,17:4277-4284. doi: 10.1158/1078-0432.CCR-10-2866

    9. [9]

      Li S., Liu H.N., Jia Y.Y.. A novel SNPs detection method based on gold magnetic nanoparticles array and single base extension[J]. Theranostics, 2012,2:967-975. doi: 10.7150/thno.5032

    10. [10]

      Elingarami S., Deng Y., Fan J., Zhang Y.Y., He N.Y.. NEIL-2 single nucleotide polymorphism genotyping using single base extension on core-shell Fe3O4@-SiO2@Au magnetic nanoparticles and association of the genotypes with gastric cancer risk in northern Jiangsu (China)[J]. Sci. Adv. Mater., 2014,6:899-907. doi: 10.1166/sam.2014.1853

    11. [11]

      Long J.B., Liu Y.X., Cao Q.F.. Sensitive and enzyme-free detection for single nucleotide polymorphism using microbead-assisted toehold-mediated strand displacement reaction[J]. Chin. Chem. Lett., 2015,26:1031-1035. doi: 10.1016/j.cclet.2015.05.036

    12. [12]

      De Feo E., Persiani R., La Greca A.. A case-control study on the effect of p53 and p73 gene polymorphisms on gastric cancer risk and progression[J]. Mutat. Res., 2009,675:60-65. doi: 10.1016/j.mrgentox.2009.02.009

    13. [13]

      Wu X.Q., Zeng Z.R., Chen B.. Association between polymorphisms in interleukin-17A and interleukin-17F genes and risks of gastric cancer[J]. Int. J. Cancer, 2010,127:86-92. doi: 10.1002/ijc.25027

    14. [14]

      Zhang Y.Y., Jia Y.Y., Li S.. Genotyping of 765G>C in COX-2 gene based on MNPs and dual-color fluorescence hybridization and its association with risk of gastric cancer in Northern Jiangsu of China[J]. Sci. Adv. Mater., 2014,6:1146-1153. doi: 10.1166/sam.2014.1877

    15. [15]

      Mou X.B., Li T.T., Wang J.H.. Genetic variation of BCL2(rs2279115), NEIL2(rs804270), LTA (rs909253), PSCA (rs2294008) and PLCE1(rs3765524, rs10509670) genes and their correlation to gastric cancer risk based on universal tagged arrays and Fe3O4 magnetic nanoparticles[J]. J. Biomed. Nanotechnol., 2015,11:2057-2066. doi: 10.1166/jbn.2015.2113

    16. [16]

      Wang X.L., Wei L., Tao G.H., Huang M.Q.. Synthesis and characterization of magnetic and luminescent Fe3O4/CdTe nanocomposites using aspartic acid as linker[J]. Chin. Chem. Lett., 2011,22:233-236. doi: 10.1016/j.cclet.2010.09.016

    17. [17]

      Zheng J.N., Lin Z., Zhang L., Yang H.H.. Polydopamine-mediated immobilization of phenylboronic acid on magnetic microspheres for selective enrichment of glycoproteins and glycopeptides[J]. Sci. China Chem., 2015,58:1056-1064. doi: 10.1007/s11426-014-5286-5

    18. [18]

      Zhang H., Huang F., Liu D.L., Shi P.. Highly efficient removal of Cr(VI) from wastewater via adsorption with novel magnetic Fe3O4@C@MgAl-layered double-hydroxide[J]. Chin. Chem. Lett., 2015,26:1137-1143. doi: 10.1016/j.cclet.2015.05.026

    19. [19]

      Wang J.H., Ali Z., Wang N.Y.. Simultaneous extraction of DNA and RNA from Escherichia coli BL 21 based on silica-coated magnetic nanoparticles[J]. Sci. China Chem., 2015,58:1774-1778. doi: 10.1007/s11426-015-5483-x

    20. [20]

      Sun Y.G., Truong T.T., Liu Y.Z., Hu Y.X.. Encapsulation of superparamagnetic Fe3O4@SiO2 core/shell nanoparticles in MnO2 microflowers with high surface areas[J]. Chin. Chem. Lett., 2015,26:233-237. doi: 10.1016/j.cclet.2014.10.012

    21. [21]

      Lu L.W., Wang X.Y., Xiong C.X., Yao L.. Recent advances in biological detection with magnetic nanoparticles as a useful tool[J]. Sci. China Chem., 2015,58:793-809. doi: 10.1007/s11426-015-5370-5

    22. [22]

      Mirabedini M., Motamedi E., Kassaee M.Z.. Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A3-coupling synthesis of propargylamines[J]. Chin. Chem. Lett., 2015,26:1085-1090. doi: 10.1016/j.cclet.2015.05.021

    23. [23]

      Oliveira D.C., de Lencastre H.. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus[J]. Antimicrob. Agents Chemother., 2002,4:2155-2161.  

    24. [24]

      Pérez-Pérez F.J., Hanson N.D.. Detection of plasmid-mediated AmpC-lactamase genes in clinical isolates by using multiplex PCR[J]. J. Clin. Microbiol., 2002,40:2153-2162. doi: 10.1128/JCM.40.6.2153-2162.2002

    25. [25]

      Poirela L., Walshb T.R., Cuvilliera V., Nordmann P.. Multiplex PCR for detection of acquired carbapenemase genes[J]. Diagn. Microbiol. Infect. Dis., 2011,70:119-123. doi: 10.1016/j.diagmicrobio.2010.12.002

    26. [26]

      Fitting C., Parlato M., Adib-Conquy M.. DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients[J]. PLoS ONE, 2012,7e38916. doi: 10.1371/journal.pone.0038916

    27. [27]

      Poritz M.A., Blaschke A.J., Byington C.L.. Film Array, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection[J]. PLoS ONE, 2011,6e26047. doi: 10.1371/journal.pone.0026047

    28. [28]

      Carlson C.S., Emerson R.O., Sherwood A.M.. Using synthetic templates to design an unbiased multiplex PCR assay[J]. Nat. Commun., 2013,42680.  

    29. [29]

      Lim L.P., Lau N.C., Garrett-Engele P.. Microarray analysis shows that some microRNAs down regulate large numbers of target mRNAs[J]. Nature, 2005,433:769-773. doi: 10.1038/nature03315

    30. [30]

      Wei S., Brooks Ⅲ C.L.. Stability and orientation of cecropin P1 on maleimide selfassembled monolayer (SAM) surfaces and suggested functional mutations[J]. Chin. Chem. Lett., 2015,26:485-490. doi: 10.1016/j.cclet.2015.03.020

    31. [31]

      Brown M.P.S., Grundy W.N., Lin D.. Knowledge-based analysis of microarray gene expression data by using support vector machines[J]. Proc. Natl. Acad. Sci. U. S. A., 2000,97:262-267. doi: 10.1073/pnas.97.1.262

    32. [32]

      Wang C., Zhang H., Tian L.. Ultrasensitive detection of aliphatic nitroorganics based on "turn-on" fluorescent sensor array[J]. Sci. China Chem., 2016,59:89-94. doi: 10.1007/s11426-015-5527-2

    33. [33]

      Sun J.G., Graeter S.V., Tang J.. Preparation of stable micropatterns of gold on cell-adhesion-resistant hydrogels assisted by a hetero-bifunctional macromonomer linker[J]. Sci. China Chem., 2014,57:645-653. doi: 10.1007/s11426-013-5057-8

    34. [34]

      Dudoit S., Yang Y.H., Callow M.J., Speed T.P.. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments[J]. Stat. Sinica, 2002,12:111-139.  

    35. [35]

      Schena M., Shalon D., Davis R.W., Brown P.O.. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science, 1995,270:467-470. doi: 10.1126/science.270.5235.467

    36. [36]

      Reis-Filho J.S., Pusztai L.. Gene expression profiling in breast cancer: classification, prognostication, and prediction[J]. Lancet, 2011,378:1812-1823. doi: 10.1016/S0140-6736(11)61539-0

    37. [37]

      Moure R., Españo M., Tudó G.. Characterization of the embB gene in Mycobacterium tuberculosis isolates from Barcelona and rapid detection of main mutations related to ethambutol resistance using a low-density DNA array[J]. J. Antimicrob. Chemother., 2014,69:947-954. doi: 10.1093/jac/dkt448

    38. [38]

      Sund K.L., Zimmerman S.L., Thomas C.. Regions of homozygosity identified by SNP microarray analysis aid in the diagnosis of autosomal recessive disease and incidentally detect parental blood relationships[J]. Genet. Med., 2013,15:70-78. doi: 10.1038/gim.2012.94

    39. [39]

      Liu W.Q., Zhang R., Wei J.. Rapid diagnosis of imprinting disorders involving copy number variation and uniparental disomy using genome-wide SNP microarrays[J]. Cytogenet. Genome Res., 2015,146:9-18. doi: 10.1159/000435847

    40. [40]

      Ronchi C.L., Leich E., Sbiera S.. Single nucleotide polymorphism microarray analysis in cortisol-secreting adrenocortical adenomas identifies new candidate genes and pathways[J]. Neoplasia, 2012,14:206-218. doi: 10.1593/neo.111758

    41. [41]

      Trapnell C., Hendrickson D.G., Sauvageau M.. Differential analysis of gene regulation at transcript resolution with RNA-seq[J]. Nat. Biotechnol., 2013,31:46-53.  

    42. [42]

      Malone J.H., Oliver B.. Microarrays, deep sequencing and the true measure of the transcriptome[J]. BMC Biol., 2011,934. doi: 10.1186/1741-7007-9-34

    43. [43]

      Ritchie M.E., Phipson B., Wu D.. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res., 2015,43e47. doi: 10.1093/nar/gkv007

    44. [44]

      Tang Y.J., Li Z.Y., He N.Y.. Preparation of functional magnetic nanoparticles mediated with PEG-4000 and application in Pseudomonas aeruginosa rapid detection[J]. J. Biomed. Nanotechnol., 2013,9:312-317. doi: 10.1166/jbn.2013.1493

    45. [45]

      Jiang H.R., Zeng X., He N.Y.. Preparation and biomedical applications of goldcoated magnetic nanocomposites[J]. J. Nanosci. Nanotechnol., 2013,13:1617-1625. doi: 10.1166/jnn.2013.7103

    46. [46]

      Jiang H.R., Zeng X., Xi Z.J.. Improvement on controllable fabrication of streptavidin-modified three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites with low fluorescence background[J]. J. Biomed. Nanotechnol., 2013,9:674-684. doi: 10.1166/jbn.2013.1575

    47. [47]

      Liu M., Hu P., Zhang G.. Copy number variation analysis by ligationdependent PCR based on magnetic nanoparticles and chemiluminescence[J]. Theranostics, 2015,5:71-85. doi: 10.7150/thno.10117

    48. [48]

      Wang Z.F., Xiao P.F., Shen B., He N.Y.. Synthesis of palladium-coated magnetic nanoparticle and its application in Heck reaction[J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2006,276:116-121. doi: 10.1016/j.colsurfa.2005.10.028

    49. [49]

      Li S., Liu H.N., Liu L.S., Tian L., He N.Y.. A novel automated assay with dual-color hybridization for single-nucleotide polymorphisms genotyping on gold magnetic nanoparticle array[J]. Anal. Biochem., 2010,405:141-143. doi: 10.1016/j.ab.2010.05.016

    50. [50]

      Li C.Y., Ma C., Wang F.. Preparation and biomedical applications of core-shell silica/magnetic nanoparticle composites[J]. J. Nanosci. Nanotechnol., 2012,12:2964-2972. doi: 10.1166/jnn.2012.6428

    51. [51]

      Yang H.W., Li Z.Y., Jia Q.Y.. Ultrasensitive detection and subtyping of porcine endogenous retrovirus provirus based on magnetic nanoparticles and chemiluminescence[J]. J. Nanosci. Nanotechnol., 2015,15:5597-5604. doi: 10.1166/jnn.2015.10046

    52. [52]

      Li S., Liu H.N., Jia Y.Y.. An automatic high-throughput Single Nucleotide Polymorphism genotyping approach based on universal tagged arrays and magnetic nanoparticles[J]. J. Biomed. Nanotechnol., 2013,9:689-698. doi: 10.1166/jbn.2013.1568

    53. [53]

      Zhang Y.Y., Liu H.N., Jia Y.Y.. A magnetic nanoparticles-based combination detection of COX-2 and BCL-2 polymorphisms associated with gastric cancer susceptibility[J]. Sci. Adv. Mater., 2015,7:532-539. doi: 10.1166/sam.2015.2130

    54. [54]

      Liu H.N., Li S., Liu L.S., Tian L., He N.Y.. An integrated and sensitive detection platform for biosensing application based on Fe@Au magnetic nanoparticles as bead array carries[J]. Biosens. Bioelectron., 2010,26:1442-1448. doi: 10.1016/j.bios.2010.07.078

    55. [55]

      Elingarami S., Liu H.N., Kalinjuma A.V.. Polymorphisms in NEIL-2, APE-1, CYP2E1 and MDM2 genes are independent predictors of gastric cancer risk in a northern Jiangsu population (China)[J]. J. Nanosci. Nanotechnol., 2015,15:4815-4828. doi: 10.1166/jnn.2015.10028

  • 加载中
    1. [1]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    2. [2]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    3. [3]

      Chenghe Yang Yi Lü Rui Liu . The Rise to Fame of Digital PCR. University Chemistry, 2025, 40(4): 340-345. doi: 10.12461/PKU.DXHX202406111

    4. [4]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    5. [5]

      Gaowa XingYuting ShangXiaorui WangZengnan WuQiang ZhangJiebing AiQiaosheng PuLing Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491

    6. [6]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    7. [7]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    8. [8]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    9. [9]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    10. [10]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    11. [11]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    12. [12]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    13. [13]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    14. [14]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    15. [15]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    16. [16]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

    17. [17]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    18. [18]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    19. [19]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    20. [20]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

Metrics
  • PDF Downloads(3)
  • Abstract views(752)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return