Citation: Tian-Yi Li, Hua-Chao Chen, Yi-Ming Jing, Hua-Bo Han, Xiao Liang, You-Xuan Zheng, Wei-Jiang He. Cyclometallated iridium phosphors with amino acid ancillary ligand for intracellular imaging[J]. Chinese Chemical Letters, ;2016, 27(10): 1582-1585. doi: 10.1016/j.cclet.2016.04.004 shu

Cyclometallated iridium phosphors with amino acid ancillary ligand for intracellular imaging

  • Corresponding author: You-Xuan Zheng, yxzheng@nju.edu.cn Wei-Jiang He, heweij69@nju.edu.cn
  • Received Date: 13 January 2016
    Revised Date: 28 March 2016
    Accepted Date: 1 April 2016
    Available Online: 20 October 2016

Figures(4)

  • Two new iridium complexes, (dfppy)2Ir(L-alanine) (dfppy=2-(2, 4-difluorophenyl)pyridine) and (piq)2Ir(L-alanine) (piq=L-phenylisoquinoline) were prepared with L-alanine as ancillary ligand. The two complexes show bright greenish-blue and red emission respectively. Theoretic study demonstrated that the emission nature of these complexes is mainly determined by the main ligand. And their improved aqueous solubility and the retained quantum yield favor their application in cell imaging. Intracellular imaging suggested that these two complexes have fine cell membrane permeability and is mainly distributed in cytoplasm. This study displayed a new strategy to design aqueous soluble phosphorescent cyclometallated Ir(Ⅲ) complex via introducing amino acid as ancillary ligand.
  • 加载中
    1. [1]

      S. Lamansky, P. Djurovich, D. Murphy. Highly phosphorescent bis-cyclometalated iridium complexes:synthesis, photophysical characterization, and use in organic light emitting diodes[J]. J. Am. Chem. Soc., 2001,123:4304-4312. doi: 10.1021/ja003693s

    2. [2]

      T. Sajoto, P.I. Djurovich, A. Tamayo. Blue and near-UV phosphorescence from iridium complexes with cyclometalated pyrazolyl or N-heterocyclic carbene ligands[J]. Inorg. Chem., 2005,44:7992-8003. doi: 10.1021/ic051296i

    3. [3]

      C.H. Yang, M. Mauro, F. Polo. Deep-blue-emitting heteroleptic iridium(Ⅲ) complexes suited for highly efficient phosphorescent OLEDs[J]. Chem. Mater., 2012,24:3684-3695. doi: 10.1021/cm010453

    4. [4]

      S.B. Meier, W. Sarfert, J .M. Junquera-Hernández, et al., A deep-blue emitting charged bis-cyclometallated iridium(Ⅲ) complex for light-emitting electrochemical cells[J]. J. Mater. Chem. C, 2013,1:58-68. doi: 10.1039/C2TC00251E

    5. [5]

      S. Evariste, M. Sandroni, T.W. Rees. Fluorine-free blue-green emitters for light-emitting electrochemical cells[J]. J. Mater. Chem. C, 2014,2:5793-5804. doi: 10.1039/c4tc00542b

    6. [6]

      Q. Zhao, M.X. Yu, L.X. Shi. Cationic iridium(Ⅲ) complexes with tunable emission color as phosphorescent dyes for live cell imaging[J]. Organometallics, 2010,29:1085-1091. doi: 10.1021/om900691r

    7. [7]

      G.L. Zhang, H.Y. Zhang, Y. Gao. Near-infrared-emitting iridium(Ⅲ) complexes as phosphorescent dyes for live cell imaging[J]. Organometallics, 2014,33:61-68. doi: 10.1021/om400676h

    8. [8]

      C. Shi, H.B. Sun, X. Tang. Variable photophysical properties of phosphorescent iridium(Ⅲ) complexes triggered by closo- and nido-carborane substitution[J]. Angew. Chem. Int. Ed., 2013,52:13434-13438. doi: 10.1002/anie.201307333

    9. [9]

      K.Y. Zhang, J. Zhang, Y.H. Liu. Core-shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy[J]. Chem. Sci., 2015,6:301-307. doi: 10.1039/C4SC02600D

    10. [10]

      S.J. Liu, H. Liang, K.Y. Zhang. A multifunctional phosphorescent iridium(Ⅲ) complex for specific nucleus staining and hypoxia monitoring[J]. Chem. Commun, 20105,51:7943-7946.  

    11. [11]

      S.J. Liu, J. Zhang, D.F. Shen. Reaction-based phosphorescent nanosensor for ratiometric and time-resolved luminescence imaging of fluoride in live cells[J]. Chem. Commun., 2015,51:12839-12842. doi: 10.1039/C5CC04276C

    12. [12]

      W. Lv, T.S. Yang, Q. Yu. A phosphorescent iridium(Ⅲ) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy[J]. Adv. Sci, 2015,2.  

    13. [13]

      L. Murphy, A. Congreve, L.O. Pålsson, J.A.G. Williams. The time domain in costained cell imaging:time-resolved emission imaging microscopy using a protonatable luminescent iridium complex[J]. Chem. Commun., 2009,46:8743-8745.  

    14. [14]

      Y.N. Hong, J.W.Y. Lam, B.Z. Tang. Aggregation-induced emission[J]. Chem. Soc. Rev., 2011,40:5361-5388. doi: 10.1039/c1cs15113d

    15. [15]

      M.X. Yu, Q. Zhao, L.X. Shi. Cationic iridium(Ⅲ) complexes for phosphorescence staining in the cytoplasm of living cells[J]. Chem. Commun, 2008:2115-2117.  

    16. [16]

      P. Steunenberg, A. Ruggi, N.S. van den Berg. Phosphorescence imaging of living cells with amino acid-functionalized tris(2-phenylpyridine)iridium(Ⅲ) complexes[J]. Inorg. Chem., 2012,51:2105-2114. doi: 10.1021/ic201860s

    17. [17]

      C. Adachi, R.C. Kwong, P. Djurovich. Endothermic energy transfer:a mechanism for generating very efficient high-energy phosphorescent emission in organic materials[J]. Appl. Phys. Lett., 2001,79:2082-2084. doi: 10.1063/1.1400076

    18. [18]

      T.Y. Li, X. Liang, L. Zhou. N-heterocyclic carbenes:versatile second cyclometalated ligands for neutral iridium(Ⅲ) heteroleptic complexes, Inorg[J]. Chem, 2015,54:161-173.  

    19. [19]

      A. Tsuboyama, H. Iwawaki, M. Furugori. Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode[J]. J. Am. Chem. Soc., 2003,125:12971-12979. doi: 10.1021/ja034732d

    20. [20]

      M.J. Frisch, G.W. Trucks, H.B. Schlegel. Gaussian 09, Revision A.01, Gaussian, Inc[J]. Wallingford, CT, 2009.

    21. [21]

      S. Lamansky, P. Djurovich, D. Murphy. Synthesis and characterization of phosphorescent cyclometalated iridium complexes[J]. Inorg. Chem., 2001,40:1704-1711. doi: 10.1021/ic0008969

    22. [22]

      Y.C. Zhu, L. Zhou, H.Y. Li. Highly efficient green and blue-green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodiphosphinate ligand[J]. Adv. Mater., 2011,23:4041-4046. doi: 10.1002/adma.v23.35

    23. [23]

      Q.L. Xu, C.C. Wang, T.Y. Li. Syntheses, photoluminescence, and electroluminescence of a series of iridium complexes with trifluoromethyl-substituted 2-phenylpyridine as the main ligands and tetraphenylimidodiphosphinate as the ancillary ligand[J]. Inorg. Chem., 2013,52:4916-4925. doi: 10.1021/ic302510p

    24. [24]

      K.P.S. Zanoni, B.K. Kariyazaki, A. Ito. Blue-green iridium(Ⅲ) emitter and comprehensive photophysical elucidation of heteroleptic cyclometalated iridium(Ⅲ) complexes[J]. Inorg. Chem., 2014,53:4089-4099. doi: 10.1021/ic500070s

  • 加载中
    1. [1]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    2. [2]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    3. [3]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    4. [4]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    5. [5]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    6. [6]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    9. [9]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    10. [10]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    11. [11]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    12. [12]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

    13. [13]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    14. [14]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    15. [15]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    16. [16]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    17. [17]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    18. [18]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    19. [19]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    20. [20]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

Metrics
  • PDF Downloads(0)
  • Abstract views(673)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return