Citation: Yan Zhang, Wen-Li Gao, Zhi-Yuan Liu, Ya Jiang, Ke Duan, Bo Feng. Mineralization and osteoblast behavior of multilayered films on TiO2 nanotube surfaces assembled by the layer-by-layer technique[J]. Chinese Chemical Letters, ;2016, 27(7): 1091-1096. doi: 10.1016/j.cclet.2016.03.035 shu

Mineralization and osteoblast behavior of multilayered films on TiO2 nanotube surfaces assembled by the layer-by-layer technique

  • Corresponding author: Bo Feng, fengbo@swjtu.edu.cn
  • Received Date: 22 February 2016
    Revised Date: 7 March 2016
    Accepted Date: 14 March 2016
    Available Online: 31 July 2016

    Fund Project: This work was supported by the National Natural Science Foundation of China No. 31570955Applied Basic Research Programs of Sichuan Province, China No. 2015JY0036This work was supported by the National Natural Science Foundation of China (No. 31570955) and Applied Basic Research Programs of Sichuan Province, China (No. 2015JY0036).

Figures(9)

  • In this paper, the multilayer films of poly-L-lysine (PLL) and DNA were created on TiO2 nanotube surfaces using the layer-by-layer (LBL) self-assembly technique. Chemical compositions of the assembled multilayered films were investigated by X-ray photoelectron spectroscopy. Biological properties of the multilayered films were evaluated by the biomimetic mineralization and osteoblast cell culture experiments. The results indicated that PLL and DNA were successfully assembled onto TiO2 nanotube surfaces by electrostatic attraction. Moreover, the samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation and promoting osteoblast cells adhesion, proliferation and early differentiation.
  • 加载中
    1. [1]

      Y.L. Zhang, L.J. Chen, C.D. Liu. , Self-assembly chitosan/gelatin composite coating on icariin-modified TiO2 nanotubes for the regulation of osteoblast bioactivity[J]. Mater. Des., 2016,92:471-479.  

    2. [2]

      S. Lavenus, D.J. Poxson, N. Ogievetsky. , Stem cell behavior on tailored porous oxide surface coatings[J]. Biomaterials, 2015,55:96-109. doi: 10.1016/j.biomaterials.2015.03.033

    3. [3]

      Q.C. Wang, M. Libera. Microgel-modified surfaces enhance short-term osteoblast response[J]. Colloid Surf B, 2014,118:202-209. doi: 10.1016/j.colsurfb.2014.04.002

    4. [4]

      L. Xia, B. Feng, P.Z. Wang. , In vitro and in vivo studies of surface-structured implants for bone formation[J]. Int. J. Nanomed., 2012,7:4873-4881.  

    5. [5]

      K.S. Brammer, C.J. Frandsen, S. Jin. TiO2 nanotubes for bone regeneration[J]. Trends. Biotechnol., 2012,30:315-322. doi: 10.1016/j.tibtech.2012.02.005

    6. [6]

      K.C. Popat, L. Leoni, C.A. Grimes. , Influence of engineered titania nanotubular surfaces on bone cells[J]. Biomaterials, 2007,28:3188-3197. doi: 10.1016/j.biomaterials.2007.03.020

    7. [7]

      T. Groth, A. Lendlein. Layer-by-layer deposition of polyelectrolytes a versatile tool for the in vivo repair of blood vessels[J]. Angew. Chem. Int. Ed., 2004,43:926-928. doi: 10.1002/(ISSN)1521-3773

    8. [8]

      N. Jessel, M. Oulad-Abdeighani, F. Meyer. , Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrin embedded in a polyelectrolyte multilayer[J]. Proc. Natl. Acad. Sci., 2006,103:8618-8621. doi: 10.1073/pnas.0508246103

    9. [9]

      Z. Guo, G.Q. Huang, J. Li. , Graphene oxide-Ag/poly-L-lysine modified glassy carbon electrode as an electrochemical sensor for the determination of dopamine in the presence of ascorbic acid[J]. J. Electroanal. Chem., 2015,759:113-121. doi: 10.1016/j.jelechem.2015.11.001

    10. [10]

      S. Kamei, N. Tomita, S. Tamai. , Histologic and mechanical evaluation for bone bonding of polymer surfaces grafted with a phosphate-containing polymer[J]. J. Biomed. Mater. Res., 1997,37:384-393. doi: 10.1002/(ISSN)1097-4636

    11. [11]

      J. Blacklock, H. Handa, D.S. Manickam. , Disassembly of layer-by-layer films of plasmid DNA and reducible TAT polypeptide[J]. Biomaterials, 2007,28:117-124. doi: 10.1016/j.biomaterials.2006.08.035

    12. [12]

      W.L. Gao, B. Feng, X. Lu. , Characterization and cell behavior of titanium surfaces with PLL/DNA modification via a layer-by-layer technique[J]. J. Biomed. Mater. Res. A, 2012,100:2176-2185.  

    13. [13]

      W.L. Gao, B. Feng, Y.X. Ni. , Protein adsorption and biomimetic mineralization behaviors of PLL-DNA multilayered films assembled onto titanium[J]. Appl. Surf. Sci., 2010,257:538-546. doi: 10.1016/j.apsusc.2010.07.029

    14. [14]

      C.J. Bettinger, R. Langer, J.T. Borenstein. Engineering substrate topography at the micro- and nanoscale to control cell function[J]. Angew. Chem. Int. Ed., 2009,48:5406-5415. doi: 10.1002/anie.v48:30

    15. [15]

      S. Clair, F. Variola, M. Kondratenko. , Self-assembled monolayer of alkanephosphoric acid on nanotextured Ti[J]. J. Chem. Phys., 2008,128144705. doi: 10.1063/1.2876421

    16. [16]

      J. Shi, B. Feng, X. Lu. , Adsorption and release behavior of BSA and FN on nanostructural Ti surface[J]. J. Inorg. Mater., 2011,26:1299-1303. doi: 10.3724/SP.J.1077.2011.01299

    17. [17]

      B. Feng, J. Weng, B.C. Yang. , Surface characterization of titanium and adsorption of bovine serum albumin[J]. Mater. Charact., 2003,49:129-137.  

    18. [18]

      T. Sun, W.C. Lee, M. Wang. A comparative study of apatite coating and apatite/collagen composite coating fabricated on NiTi shape memory alloy through electrochemical deposition[J]. Mater. Lett., 2011,65:2575-2577. doi: 10.1016/j.matlet.2011.05.107

    19. [19]

      Y. Wang, H.J. Yu, C.Z. Chen. , Review of the biocompatibility of micro-arc oxidation coated titanium alloys[J]. Mater. Des., 2015,85:640-652.  

    20. [20]

      A. Nanci, S. Zalzal, Y. Gotoh. , Ultrastructural characterization and immunolocalization of osteopontin in rat calvarial osteoblast primary cultures[J]. Microsc. Res. Tech., 1996,33:214-231. doi: 10.1002/(ISSN)1097-0029

    21. [21]

      X.Y. Shi, R. Sanedrin, F.M. Zhou. Structural characterization of multilayered DNA and polylysine composite films: influence of ionic strength of DNA solutions on the extent of DNA incorporation[J]. J. Phys. Chem. B, 2002,106:1173-1180.  

    22. [22]

      B. Feng, J.Y. Chen, S.K. Qi. , Carbonate apatite coating on titanium induced rapidly by precalcification[J]. Biomaterials, 2002,23:173-179. doi: 10.1016/S0142-9612(01)00093-X

    23. [23]

      S.H. Oh, R.R. Finones, C. Daraio. , Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes[J]. Biomaterials, 2005,26:4938-4943. doi: 10.1016/j.biomaterials.2005.01.048

    24. [24]

      Q. Liu, J. Ding, F.K. Mante. , The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique[J]. Biomaterials, 2002,23:3110-3111.  

    25. [25]

      K. Anselme, M. Bigerelle, B. Noel. , Effect of grooves titanium substrate on human osteoblastic cell growth[J]. J. Biomed. Mater. Res., 2002,60:529-540. doi: 10.1002/jbm.v60:4

    26. [26]

      J. Yang, J.Z. Bei, S.G. Wang. Enhanced cell affinity of poly (D. L-lactide) by combining plasma treatment with collagen anchorage[J]. Biomaterials, 2002,23:2607-2614. doi: 10.1016/S0142-9612(01)00400-8

    27. [27]

      H.Y. Lin, J.H. Chen. Osteoblast differentiation and phenotype expressions on chitosan-coated Ti-6Al-4V[J]. Carbohydr. Polym., 2013,97:618-626. doi: 10.1016/j.carbpol.2013.05.048

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    5. [5]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    8. [8]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    9. [9]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    12. [12]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    15. [15]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    16. [16]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    17. [17]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    20. [20]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

Metrics
  • PDF Downloads(3)
  • Abstract views(706)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return