Citation: Jie Li, Lin-Ping Qian, Li-Ya Hu, Bin Yue, He-Yong He. Low-temperature hydrogenation of maleic anhydride to succinic anhydride and γ-butyrolactone over pseudo-boehmite derived alumina supported metal (metal = Cu, Co and Ni) catalysts[J]. Chinese Chemical Letters, ;2016, 27(7): 1004-1008. doi: 10.1016/j.cclet.2016.03.021 shu

Low-temperature hydrogenation of maleic anhydride to succinic anhydride and γ-butyrolactone over pseudo-boehmite derived alumina supported metal (metal = Cu, Co and Ni) catalysts

  • Corresponding author: Bin Yue, yuebin@fudan.edu.cn He-Yong He, heyonghe@fudan.edu.cn
  • Received Date: 15 February 2016
    Revised Date: 8 March 2016
    Accepted Date: 11 March 2016
    Available Online: 19 July 2016

Figures(5)

  • The pseudo-boehmite derived alumina supported metal (Cu, Co and Ni) catalysts prepared by the impregnation method were investigated in hydrogenation of maleic anhydride (MA) to succinic anhydride (SA) and γ-butyrolactone. The catalysts were characterized by ICP-AES, N2 adsorption-desorption, XRD, H2-TPR, CO-TPD, dissociative N2O adsorption and TEM and the results showed that the alumina possessed mesoporous feature and the metal species were well dispersed on the support. Compared to Cu/Al2O3 and Co/Al2O3, Ni/Al2O3 exhibited higher catalytic activity in the MA hydrogenation with 92% selectivity to SA and nearly 100% conversion of MA at 140 ℃ under 0.5 MPa of H2 with a weighted hourly space velocity of 2 h-1 (MA). The stability of Ni/Al2O3 catalyst was also investigated.
  • 加载中
    1. [1]

      Q. Wang, H.Y. Cheng, R.X. Liu. Selective hydrogenation of maleic anhydride to γ-butyrolactone in supercritical carbon dioxide[J]. Catal. Commun., 2009,10:592-595. doi: 10.1016/j.catcom.2008.10.042

    2. [2]

      Y. Ma, Y.Q. Huang, Y.W. Cheng, L.J. Wang, X. Li. Selective liquid-phase hydrogenation of maleic anhydride to succinic anhydride on biosynthesized Ru-based catalysts[J]. Catal. Commun., 2014,57:40-44. doi: 10.1016/j.catcom.2014.08.001

    3. [3]

      S.A. Regenhardt, A.F. Trasarti, C.I. Meyer, T.F. Garetto, A.J. Marchi. Selective gasphase conversion of maleic anhydride to propionic acid on Pt-based catalysts[J]. Catal. Commun., 2013,35:59-63. doi: 10.1016/j.catcom.2013.02.015

    4. [4]

      S.M. Jung, E. Godard, S.Y. Jung, K.C. Park, J.U. Choi. Liquid-phase hydrogenation of maleic anhydride over Pd/SiO2: effect of tin on catalytic activity and deactivation[J]. J. Mol. Catal. A Chem., 2003,198:297-302. doi: 10.1016/S1381-1169(02)00686-6

    5. [5]

      H.J. Yuan, C.L. Zhang, W.T. Huo. Selective hydrogenation of maleic anhydride over Pd/Al2O3 catalysts prepared via colloid deposition[J]. J. Chem. Sci., 2014,126:141-145. doi: 10.1007/s12039-013-0542-3

    6. [6]

      C.I. Meyer, A.J. Marchi, A. Monzon, T.F. Garetto. Deactivation and regeneration of Cu/SiO2 catalyst in the hydrogenation of maleic anhydride. Kinetic modeling[J]. Appl. Catal. A General, 2009,367:122-129. doi: 10.1016/j.apcata.2009.07.041

    7. [7]

      C.I. Meyer, S.A. Regenhardt, A.J. Marchi, T.F. Garetto. Gas phase hydrogenation of maleic anhydride at low pressure over silic α-supported cobalt and nickel catalysts[J]. Appl. Catal. A General, 2012,417-418:59-65. doi: 10.1016/j.apcata.2011.12.026

    8. [8]

      J. Li, W.P. Tian, L. Shi. Hydrogenation of maleic anhydride to succinic anhydride over Ni/HY-Al2O3[J]. Ind. Eng. Chem. Res., 2010,49:11837-11840. doi: 10.1021/ie101072v

    9. [9]

      X. Liao, Y. Zhang, M. Hill. Highly efficient Ni/CeO2 catalyst for the liquid phase hydrogenation of maleic anhydride[J]. Appl. Catal. A General, 2014,488:256-264. doi: 10.1016/j.apcata.2014.09.042

    10. [10]

      K. Keyvanloo, W.C. Hecker, B.F. Woodfield, C.H. Bartholomew. Highly active and stable supported iron Fischer-Tropsch catalysts: effects of support properties and SiO2 stabilizer on catalyst performance[J]. J. Catal., 2014,319:220-231. doi: 10.1016/j.jcat.2014.08.015

    11. [11]

      D.Z. Gao, H.B. Yin, A.L. Wang, L.Q. Shen, S.X. Liu. Gas phase dehydrogenation of ethanol using maleic anhydride as hydrogen acceptor over Cu/hydroxylapatite, Cu/SBA-15, and Cu/MCM-41 catalysts[J]. J. Ind. Eng. Chem., 2015,26:322-332. doi: 10.1016/j.jiec.2014.12.004

    12. [12]

      W.T. Huo, C.L. Zhang, H.J. Yuan. Vapor-phase selective hydrogenation of maleic anhydride to succinic anhydride over Ni/TiO2 catalysts[J]. J. Ind. Eng. Chem., 2014,20:4140-4145. doi: 10.1016/j.jiec.2014.01.012

    13. [13]

      U.R. Pillai, E. Sahle-Demessie. Selective hydrogenation of maleic anhydride to gbutyrolactone over Pd/Al2O3 catalyst using supercritical CO2 as solvent[J]. Chem. Commun., 2002,5:422-423.

    14. [14]

      U.R. Pillai, E. Sahle-Demessie, D. Young. Maleic anhydride hydrogenation over Pd/Al2O3 catalyst under supercritical CO2 medium[J]. Appl. Catal. B Environ., 2003,43:131-138. doi: 10.1016/S0926-3373(02)00305-3

    15. [15]

      D.Z. Gao, Y.H. Feng, H.B. Yin, A.L. Wang, T.S. Jiang. Coupling reaction between ethanol dehydrogenation and maleic anhydride hydrogenation catalyzed by Cu/Al2O3, Cu/ZrO2, and Cu/ZnO catalysts[J]. Chem. Eng. J., 2013,233:349-359. doi: 10.1016/j.cej.2013.08.058

    16. [16]

      J. Li, W.P. Tian, X. Wang, L. Shi. Nickel and nickel-platinum as active and selective catalyst for the maleic anhydride hydrogenation to succinic anhydride[J]. Chem. Eng. J., 2011,175:417-422. doi: 10.1016/j.cej.2011.09.023

    17. [17]

      P.G. Tang, Y.Y. Chai, J.T. Feng. Highly dispersed Pd catalyst for anthraquinone hydrogenation supported on alumina derived from a pseudoboehmite precursor[J]. Appl. Catal. A General, 2014,469:312-319. doi: 10.1016/j.apcata.2013.10.008

    18. [18]

      Z.W. Huang, J. Chen, Y.Q. Jia. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over copper catalysts[J]. Appl. Catal. B Environ., 2014,147:377-386. doi: 10.1016/j.apcatb.2013.09.014

    19. [19]

      Y.H. Feng, H.B. Yin, A.L. Wang, T. Xie, T.S. Jiang. Selective hydrogenation of maleic anhydride to succinic anhydride catalyzed by metallic nickel catalysts[J]. Appl. Catal. A General, 2012,425-426:205-212. doi: 10.1016/j.apcata.2012.03.023

    20. [20]

      B.C. Lippens, J.H. De Boer. Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction[J]. Acta Crystallogr., 1964,17:1312-1322. doi: 10.1107/S0365110X64003267

    21. [21]

      H.T. Li, Y.L. Xu, C.G. Gao, Y.X. Zhao. Structural and textural evolution of Ni/γ-Al2O3 catalyst under hydrothermal conditions[J]. Catal. Today, 2010,158:475-480. doi: 10.1016/j.cattod.2010.07.015

    22. [22]

      G. Paglia, C.E. Buckley, A.L. Rohl. Boehmite derived γ'-alumina system., 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, γ'-alumina[J]. Chem. Mater., 2004,16:220-236. doi: 10.1021/cm034917j

    23. [23]

      T. Pairojpiriyakul, E. Croiset, W. Kiatkittipong. Hydrogen production from catalytic supercritical water reforming of glycerol with cobalt-based catalysts[J]. Int. J. Hydrogen Energy, 2013,38:4368-4379. doi: 10.1016/j.ijhydene.2013.01.169

    24. [24]

      B. Jongsomjit, J. Panpranot, J.G. Goodwin Jr.. Co-support compound formation in alumin α-supported cobalt catalysts[J]. J. Catal., 2001,204:98-109. doi: 10.1006/jcat.2001.3387

    25. [25]

      P.X. Ling, D. Li, X.Y. Wang. Supported CuO/γ-Al2O3 as heterogeneous catalyst for synthesis of diaryl ether under ligand-free conditions[J]. J. Mol. Catal. A Chem., 2012,357:112-116. doi: 10.1016/j.molcata.2012.01.028

    26. [26]

      Y.L. Zhang, D.G. Wei, S. Hammache, J.G. Goodwin Jr.. Effect of water vapor on the reduction of Ru-promoted Co/Al2O3[J]. J. Catal., 1999,188:281-290. doi: 10.1006/jcat.1999.2666

    27. [27]

      B. Jongsomjit, J. Panpranot, J.G. Goodwin Jr.. Effect of zirconi α-modified alumina on the properties of Co/γ-Al2O3 catalysts[J]. J. Catal., 2003,215:66-77. doi: 10.1016/S0021-9517(02)00102-1

    28. [28]

      L. De Rogatis, T. Montini, A. Cognigni, L. Olivi, P. Fornasiero. Methane partial oxidation on NiCu-based catalysts[J]. Catal. Today, 2009,145:176-185. doi: 10.1016/j.cattod.2008.04.019

    29. [29]

      R Molina, G. Poncelet. α-Alumin α-supported nickel catalysts prepared from nickel acetylacetonate: a TPR study, Poncelet,[J]. J. Catal., 1998,173:257-267. doi: 10.1006/jcat.1997.1931

    30. [30]

      Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima. Characterization of C α-promoted Ni/ α-Al2O3 catalyst for CH4 reforming with CO2[J]. Appl. Catal. A General, 2003,253:381-387. doi: 10.1016/S0926-860X(03)00543-X

    31. [31]

      S.F. Guo, L. Shi. Synthesis of succinic anhydride from maleic anhydride on Ni/diatomite catalysts[J]. Catal. Today, 2013,212:137-141. doi: 10.1016/j.cattod.2012.10.004

    32. [32]

      M. El Doukkali, A. Iriondo, J.F. Cambra. Deactivation study of the Pt and/or Ni-based γ-Al2O3 catalysts used in the aqueous phase reforming of glycerol for H2 production[J]. Appl. Catal. A General, 2014,472:80-91. doi: 10.1016/j.apcata.2013.12.015

  • 加载中
    1. [1]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    2. [2]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    3. [3]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    4. [4]

      Shaobin HeXiaoyun GuoQionghua ZhengHuanran ShenYuan XuFenglin LinJincheng ChenHaohua DengYiming ZengWei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096

    5. [5]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    6. [6]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    7. [7]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    10. [10]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    11. [11]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    12. [12]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    13. [13]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    14. [14]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    15. [15]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    16. [16]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    17. [17]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    18. [18]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    19. [19]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    20. [20]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

Metrics
  • PDF Downloads(3)
  • Abstract views(906)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return