Citation: Xiao-Xu Ma, Cui-Cui Wang, Wen-Sheng Cai, Xue-Guang Shao. Quantification of albumin in urine using preconcentration and near-infrared diffuse reflectance spectroscopy[J]. Chinese Chemical Letters, ;2016, 27(10): 1597-1601. doi: 10.1016/j.cclet.2016.03.008 shu

Quantification of albumin in urine using preconcentration and near-infrared diffuse reflectance spectroscopy

  • Corresponding author: Xue-Guang Shao, xshao@nankai.edu.cn
  • Received Date: 1 February 2016
    Revised Date: 1 March 2016
    Accepted Date: 4 March 2016
    Available Online: 16 October 2016

Figures(3)

  • Urinary albumin is an important diagnostic and prognostic marker for cardiorenal disease. Recent studies have shown that elevation of albumin excretion even in normal concentration range is associated with increased cardiorenal risk. Therefore, accurate measurement of urinary albumin in normal concentration range is necessary for clinical diagnosis. In this work, thiourea-functionalized silica nanoparticles are prepared and used for preconcentration of albumin in urine. The adsorbent with the analyte was then used for near-infrared diffuse reflectance spectroscopy measurement directly and partial least squares model was established for quantitative prediction. Forty samples were taken as calibration set for establishing PLS model and 17 samples were used for validation of the method. The correlation coefficient and the root mean squared error of cross validation is 0.9986 and 0.43, respectively. Residual predictive deviation value of the model is as high as 18.8. The recoveries of the 17 validation samples in the concentration range of 3.39-24.39 mg/L are between 95.9%-113.1%. Therefore, the method may provide a candidate method to quantify albumin excretion in urine.
  • 加载中
    1. [1]

      S.J. Chadban, E.M. Briganti, P.G. Kerr. Prevalence of kidney damage in Australian adults:the AusDiab kidney study[J]. J. Am. Soc. Nephrol., 2003,14:S131-S138. doi: 10.1097/01.ASN.0000070152.11927.4A

    2. [2]

      L.X. Zhang, F. Wang, L. Wang. Prevalence of chronic kidney disease in China:a cross-sectional survey[J]. Lancet, 2012,379:815-822. doi: 10.1016/S0140-6736(12)60033-6

    3. [3]

      A.S. Levey, J. Coresh, E. Balk. National Kidney Foundation practice guidelines for chronic kidney disease:evaluation, classification, and stratification[J]. Ann. Intern. Med., 2003,139:137-147. doi: 10.7326/0003-4819-139-2-200307150-00013

    4. [4]

      G.T. Hernandez, H. Nasri. World Kidney Day 2014:increasing awareness of chronic kidney disease and aging[J]. J. Renal. Inj. Prev., 2014,3:3-4.  

    5. [5]

      W.G. Couser, G. Remuzzi, S. Mendis, M. Tonelli. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases[J]. Kidney Int., 2011,80:1258-1270. doi: 10.1038/ki.2011.368

    6. [6]

      D. Lim, D.Y. Lee, S.H. Cho. Diagnostic accuracy of urine dipstick for proteinuria in older outpatients[J]. Kidney Res. Clin. Pract., 2014,33:199-203. doi: 10.1016/j.krcp.2014.10.003

    7. [7]

      J. Barratt, P. Topham. Urine proteomics:the present and future of measuring urinary protein components in disease[J]. Can. Med. Assoc. J., 2007,177:361-368. doi: 10.1503/cmaj.061590

    8. [8]

      W.G. Miller, D.E. Bruns, G.L. Hortin. Current issues in measurement and reporting of urinary albumin excretion[J]. Clin. Chem., 2009,55:24-38.  

    9. [9]

      P.A. McFarlane. Testing for albuminuria in 2014[J]. Can. J. Diabetes, 2014,38:372-375. doi: 10.1016/j.jcjd.2014.07.221

    10. [10]

      A. Shaikh, J.C. Seegmiller, T.M. Borland. Comparison between immunoturbidimetry, size-exclusion chromatography, and LC-MS to quantify urinary albumin[J]. Clin. Chem., 2008,54:1504-1510. doi: 10.1373/clinchem.2008.107508

    11. [11]

      R. Liu, G. Li, X.F. Cui. Methodological evaluation and comparison of five urinary albumin measurements[J]. J. Clin. Lab. Anal., 2011,25:324-329. doi: 10.1002/jcla.20477

    12. [12]

      J.R. Barr, V.L. Maggio, D.G. Patterson Jr.. Isotope dilution-mass spectrometric quantification of specific proteins:model application with apolipoprotein A-I[J]. Clin. Chem., 1996,42:1676-1682.  

    13. [13]

      J.C. Seegmiller, D.R. Barnidge, B.E. Burns. Quantification of urinary albumin by using protein cleavage and LC-MS/MS[J]. Clin. Chem., 2009,55:1100-1107. doi: 10.1373/clinchem.2008.115543

    14. [14]

      J.M. Dersch, T.T.T.N. Nguyen, J. Østergaard, S. Stürup, B. Gammelgaard. Selective analysis of human serum albumin based on SEC-ICP-MS after labelling with iophenoxic acid[J]. Anal. Bioanal. Chem., 2015,407:2829-2836. doi: 10.1007/s00216-015-8507-7

    15. [15]

      E.P. Diamandis. Protein quantification by mass spectrometry:is it ready for prime time?[J]. Clin. Chem, 2009,55:1427-1430. doi: 10.1373/clinchem.2009.128058

    16. [16]

      A. Beasley-Green, N.M. Burris, D.M. Bunk, K.W. Phinney. Multiplexed LC-MS/MS assay for urine albumin[J]. J. Proteome Res., 2014,13:3930-3939. doi: 10.1021/pr500204c

    17. [17]

      A.M. Hawkridge. Practical considerations and current limitations in quantitative mass spectrometry-based proteomics, in:C.E. Eyers, S.J. Gaskell (Eds.), Quantitative Proteomics[J]. RSC Publishing, Cambridge, 2014:pp.3-25.  

    18. [18]

      J.W. Hall, A. Pollard. Near-infrared spectrophotometry:a new dimension in clinical chemistry[J]. Clin. Chem., 1992,38:1623-1631.  

    19. [19]

      W.J. Dong, Y.N. Ni, S. Kokot. Quantitative analysis of two adulterants in Cynanchum stauntonii by near-infrared spectroscopy combined with multi-variate calibrations[J]. Chem. Pap., 2012,66:1083-1091.  

    20. [20]

      X.G. Shao, X.H. Bian, J.J. Liu, M. Zhang, W.S. Cai. Multivariate calibration methods in near infrared spectroscopic analysis[J]. Anal. Methods, 2010,2:1662-1666. doi: 10.1039/c0ay00421a

    21. [21]

      C.J. Cui, W.S. Cai, X.G. Shao. Near-infrared diffuse reflectance spectroscopy with sample spots and chemometrics for fast determination of bovine serum albumin in micro-volume samples[J]. Chin. Chem. Lett., 2013,24:67-69. doi: 10.1016/j.cclet.2012.12.012

    22. [22]

      X.M. Wei, Z.X. Huang, W. Zhang, Y.P. Du. Improving the sensitivity of NIR spectroscopy with an enrichment technique:determining a trace analyte of ethyl carbamate[J]. Anal. Sci., 2007,23:853-856. doi: 10.2116/analsci.23.853

    23. [23]

      J.H. Li, Y. Zhang, W.S. Cai, X.G. Shao. Simultaneous determination of mercury, lead and cadmium ions in water using near-infrared spectroscopy with preconcentration by thiol-functionalized magnesium phyllosilicate clay[J]. Talanta, 2011,84:679-683. doi: 10.1016/j.talanta.2011.01.072

    24. [24]

      N. Sheng, W.S. Cai, X.G. Shao. An approach by using near-infrared diffuse reflectance spectroscopy and resin adsorption for the determination of copper, cobalt and nickel ions in dilute solution[J]. Talanta, 2009,79:339-343. doi: 10.1016/j.talanta.2009.03.059

    25. [25]

      Y. Hao, W.S. Cai, X.G. Shao. A strategy for enhancing the quantitative determination ability of the diffuse reflectance near-infrared spectroscopy, Spectrochim. Acta A Mol[J]. Biomol. Spectrosc, 2009,72:115-119. doi: 10.1016/j.saa.2008.08.011

    26. [26]

      Y. Zhang, Y. Hao, W.S. Cai, X.G. Shao. Simultaneous determination of phenol and p-nitrophenol in wastewater using near-infrared diffuse reflectance spectroscopy with adsorption preconcentration[J]. Anal. Methods, 2011,3:703-708. doi: 10.1039/c0ay00775g

    27. [27]

      Y.F. Yang, J.R. Tu, W.S. Cai, X.G. Shao. Feasibility for quantitative determination of deoxyribonucleic acid by using near-infrared diffuse reflectance spectroscopy[J]. Talanta, 2012,99:871-874. doi: 10.1016/j.talanta.2012.07.049

    28. [28]

      L.J. Liu, R.X. Zhuo. Activation and silanization of porous silica beads[J]. Ion Exch. Adsorpt., 1995,11:541-544.

    29. [29]

      G.B. Yang, D.M. Xu, Z.L. Zhao, K.D. Zhang. Synthesis and characterization of a sixarm initiating core containing 1,3,5-triazine[J]. Chem. Res. Appl., 2009,21:243-247.  

    30. [30]

      L.S. Bai, X.Y. Wen. Preparation of thiourea modified crosslinked chitosan and its adsorption to bovine serum albumin[J]. J. Anhui Univ. Tech., 2006,23:399-403.  

    31. [31]

      S. Wold. Cross-validatory estimation of the number of components in factor and principal components models[J]. Technometrics, 1978,20:397-405. doi: 10.1080/00401706.1978.10489693

    32. [32]

      R.J. Barnes, M.S. Dhanoa, S.J. Lister. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra[J]. Appl. Spectrosc., 1989,43:772-777. doi: 10.1366/0003702894202201

    33. [33]

      P. Geladi, D. MacDougall, H. Martens. Linearization and scatter-correction for near-infrared reflectance spectra of meat[J]. Appl. Spectrosc., 1985,39:491-500. doi: 10.1366/0003702854248656

    34. [34]

      A. Savitzky, M.J.E. Golay. Smoothing and differentiation of data by simplified least squares procedures[J]. Anal. Chem., 1964,36:1627-1639. doi: 10.1021/ac60214a047

    35. [35]

      X.G. Shao, A.K.M. Leung, F.T. Chau. Wavelet:a new trend in chemistry[J]. Acc. Chem. Res., 2003,36:276-283. doi: 10.1021/ar990163w

    36. [36]

      S.J. Baek, A. Park, J. Kim, A.G. Shen, J.M. Hu. A simple background elimination method for Raman spectra, Chemom. Intel[J]. Lab. Syst, 2009,98:24-30. doi: 10.1016/j.chemolab.2009.04.007

    37. [37]

      D.F. Malley, P.C. Williams. Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter[J]. Environ. Sci. Technol., 1997,31:3461-3467. doi: 10.1021/es970214p

    38. [38]

      M. Forouzangohar, D. Cozzolino, R.S. Kookana. Direct comparison between visible near- and mid-infrared spectroscopy for describing diuron sorption in soils[J]. Environ. Sci. Technol., 2009,43:4049-4055. doi: 10.1021/es8029945

  • 加载中
    1. [1]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    2. [2]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    3. [3]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    4. [4]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    5. [5]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    6. [6]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    7. [7]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    8. [8]

      Lei WangJun-Jie WuChang-Cun YanWan-Ying YangZong-Lu CheXin-Yu XiaXue-Dong WangLiang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365

    9. [9]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    10. [10]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    11. [11]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    12. [12]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    13. [13]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    14. [14]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    15. [15]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    16. [16]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    17. [17]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    18. [18]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    19. [19]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    20. [20]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

Metrics
  • PDF Downloads(2)
  • Abstract views(733)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return