Citation: Ding Jian-Wei, Wang Rui. A new green system of HPW@MOFs catalyzed desulfurization using O2 as oxidant[J]. Chinese Chemical Letters, ;2016, 27(5): 655-658. doi: 10.1016/j.cclet.2016.03.005 shu

A new green system of HPW@MOFs catalyzed desulfurization using O2 as oxidant

  • Corresponding author: Wang Rui, wangrui@sdu.edu.cn
  • Received Date: 24 January 2016
    Revised Date: 29 February 2016
    Accepted Date: 4 March 2016
    Available Online: 12 May 2016

Figures(8)

  • A series of crystalline compounds were obtained from simple one-step hydrothermal reaction of copper nitrate, benzentricaboxylate and different Keggin polyoxometalates. Phosphotungstic acid immobilized in host matrix was selected for the first time as a recyclable and efficient catalyst in oxidative desulfurization process, under eco-sustainable conditions supported by the green oxidant O2 and the green extracting agent distilled water. The efficiency of desulfurization with air was studied and it is possible to use air as green oxidant in desulfurization. Moreover, the catalyst is effective for the desulfurization of real diesel.
  • 加载中
    1. [1]

      Ma X.L., Sakanishi K., Mochida I.. Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel[J]. Ind. Eng. Chem. Res., 1994,33:218-222.

    2. [2]

      Zhang G.F., Wan R., Yu F.L., Zhao H.X.. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst[J]. Chem. Pap., 2009,63:617-619.

    3. [3]

      Zhang W., Zhang H., Xiao J.. Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen[J]. Green Chem., 2014,16:211-220.

    4. [4]

      Wang J.L., Zhao D.S., Li K.X.. Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid[J]. Energy Fuels, 2010,24:2527-2529.

    5. [5]

      Nguyen L.T.L., Nguyen C.V., Dang G.H., Le K.K.A., Phan N.T.S.. Towards applications of metal-organic frameworks in catalysis:Friedel-Crafts acylation reaction over IRMOF-8 as an efficient heterogeneous catalyst[J]. J. Mol. Catal. A:Chem., 2011,349:28-35.

    6. [6]

      Rowsell J.L.C., Yaghi O.M.. Strategies for hydrogen storage in metal-organic frameworks[J]. Angew. Chem. Int. Ed. Engl., 2005,44:4670-4679.

    7. [7]

      Zhou X., Zhang Y., Yang X.G., Zhao L.Z., Wang G.Y.. Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates[J]. J. Mol. Catal. A:Chem., 2012,361-362:12-16.

    8. [8]

      Zhang L., Hu Y.H.. Desorption of dimethylformamide from Zn4O(C8H4O4)3 framework[J]. Appl. Surf. Sci., 2011,257:3392-3398.

    9. [9]

      Hu X.F., Lu Y.K., Dai F.N., Liu C.G., Liu Y.Q.. Host-guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via "bottle around ship":an effective catalyst for oxidative desulfurization[J]. Microporous Mesoporous Mater., 2013,170:36-44.

    10. [10]

      Rafiee E., Nobakht N.. Keggin type heteropoly acid, encapsulated in metal-organic framework:a heterogeneous and recyclable nanocatalyst for selective oxidation of sulfides and deep desulfurization of model fuels[J]. J. Mol. Catal. A:Chem., 2015,398:17-25.

    11. [11]

      Ma X.L., Zhou A.N., Song C.S.. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption[J]. Catal. Today, 2007,123:276-284.

    12. [12]

      Zhou X.R., Li J., Wang X.N., Jin K., Ma W.. Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine[J]. Fuel Process. Technol., 2009,90:317-323.

    13. [13]

      Sampanthar J.T., Xiao H., Dou J.. A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel[J]. Appl. Catal. B:Environ., 2006,63:85-93.

    14. [14]

      Murata S., Murata K., Kidena K., Nomura M.. A novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes[J]. Energy Fuels, 2004,18:116-121.

    15. [15]

      Sun C.Y., Liu S.X., Liang D.D.. Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates[J]. J. Am. Chem. Soc., 2009,131:1883-1888.

    16. [16]

      Kozhevnikov I.V.. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions[J]. Chem. Rev., 1998,98:171-198.

    17. [17]

      Moffat J.B., McMonagle J.B., Taylor D.. Microporous heteropoly oxometalate heterogeneous catalysis[J]. Solid State Ionics, 1988,26:101-108.

    18. [18]

      Deltcheff C.R., Fournier M., Franck R.. Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(Ⅵ) and tungsten(Ⅵ) compounds related to the Keggin Structure[J]. Inorg. Chem., 1983,22:207-216.

    19. [19]

      Cychosz K.A., Wong-Foy A.G., Matzger A.J.. Liquid phase adsorption by microporous coordination polymers:removal of organosulfur compounds[J]. J. Am. Chem. Soc., 2008,130:6938-6939.

    20. [20]

      Khan N.A., Hasan Z., Jhung S.H.. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs):a review[J]. J. Hazard. Mater., 2013,244-245:444-456.

  • 加载中
    1. [1]

      Chaojian XuJuxin YinSihong WangYue PanQianhe ZhangNingkang XieShuo YangShaowu Lv . Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation. Chinese Chemical Letters, 2025, 36(7): 111075-. doi: 10.1016/j.cclet.2025.111075

    2. [2]

      Pin CuiYing TangJie YuZhen YangShouhua YangBoqin LiGang WangHuan PangFeng Yu . Bimetallic ZnFe–NC prepared using microchannel reactor for oxygen reduction reaction and mechanism research. Chinese Chemical Letters, 2025, 36(9): 110303-. doi: 10.1016/j.cclet.2024.110303

    3. [3]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    4. [4]

      Xinbao TongJiaying LiuYanqi ZhaoJingjun LiYe TianQingyi LiuShuiying GaoRong Cao . Metal-organic framework supported carbon quantum dots as white light-emitting phosphor. Chinese Chemical Letters, 2025, 36(7): 111058-. doi: 10.1016/j.cclet.2025.111058

    5. [5]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    6. [6]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    7. [7]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    8. [8]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    9. [9]

      Shaohua YANGNa'na GAOYaqiong GONG . Metal-organic framework-templated construction of FeOOH@CoMoO4/nickel foam heterostructure for enhanced oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2175-2185. doi: 10.11862/CJIC.20250218

    10. [10]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    11. [11]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    12. [12]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    13. [13]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    14. [14]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    15. [15]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    16. [16]

      Chong-Chen WangXiaohang Xu . Metal-organic frameworks helping resource and energy recovery from sludge. Chinese Chemical Letters, 2025, 36(10): 111287-. doi: 10.1016/j.cclet.2025.111287

    17. [17]

      Qing LiuTangxin XiaoZhouyu WangLeyong Wang . Reactive oxygen species generation by organic materials for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(10): 111504-. doi: 10.1016/j.cclet.2025.111504

    18. [18]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    19. [19]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    20. [20]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

Metrics
  • PDF Downloads(6)
  • Abstract views(1399)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return