Citation:
Shou-Jun Guo, Jie Bai, Hai-Ou Liang, Chun-Ping Li. The controllable preparation of electrospun carbon fibers supported Pd nanoparticles catalyst and its application in Suzuki and Heck reactions[J]. Chinese Chemical Letters,
;2016, 27(03): 459-463.
doi:
10.1016/j.cclet.2015.12.029
-
The palladium nanoparticles/carbon nanofibers (Pd NPs/CNFs) catalyst was prepared by the electrospinning method, the hydrazine hydrate solution reduction in an ice bath environment, the high temperature carbonization. The catalyst was characterized by X-ray diffraction (XRD), fieldemission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The nanofibers are not cross-linked and arranged in order. The surface of Pd NPs/CNFs is smooth, and it can be observed that a large number of particleswere loaded and well-dispersed in carbon fiber matrix, and the particle distribution is uniform. The activity center of catalyst is Pd(0). The Pd NPs/CNFs exhibited a high efficiency, good reusability and stability in the Suzuki and Heck reactions. It can be used for at least five consecutive runs without significant loss of its catalytic activity. The good recyclability of Pd NPs/CNFs provides a way to greatly reduce the cost of the catalyst.
-
Keywords:
- Pd NPs/CNFs,
- Electrospinning,
- Carbonization,
- Catalysts
-
-
-
[1]
[1] P.R. Rao Vadaparthi, C.H. Pavan Kumar, K. Kumar, et al., Synthesis of costunolide derivatives by Pd-catalyzed Heck arylation and evaluation of their cytotoxic activities, Med. Chem. Res. 24(2015) 2871-2878.
-
[2]
[2] S. Das, S. Jana, B. Dutta, S. Koner, Synthesis of symmetrically functionalized oligo (p-phenylenevinylene) by Pd-catalyzed Heck coupling reaction, Res. Chem. (Ⅰ)ntermed. 41(2015) 4825-4832.
-
[3]
[3] P.C. Rodrigues, B.D. Fontes, B.B.M. Torres, et al., Synthesis of a PPV-fluorene derivative:applications in luminescent devices, J. Appl. Polym. Sci. 132(2015) 42579.
-
[4]
[4] (Ⅰ). Favier, D. Madec, E. Teuma, M. Gomez, Palladium nanoparticles applied in organic synthesis as catalytic precursors, Curr. Org. Chem. 15(2011) 3127-3174.
-
[5]
[5] A. Fihri, M. Bouhrara, B. Nekoueishahraki, J.M. Basset, V. Polshettiwar, Nanocatalysts for Suzuki cross-coupling reactions, Chem. Soc. Rev. 40(2011) 5181-5203.
-
[6]
[6] J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Aryl-aryl bond formation one century after the discovery of the Ullmann reaction, Chem. Rev. 102(2002) 1359-1470.
-
[7]
[7] X.M. Chen, G.H. Wu, J.M. Chen, et al., Synthesis of "Clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide, J. Am. Chem. Soc. 133(2011) 3693-3695.
-
[8]
[8] G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction, J. Am. Chem. Soc. 131(2009) 8262-8270.
-
[9]
[9] M.X. Chen, Z. Zhang, L.Z. Li, et al., Fast synthesis of Ag-Pd@reduced graphene oxide bimetallic nanoparticles and their applications as carbon-carbon coupling catalysts, RSC Adv. 4(2014) 30914-30922.
-
[10]
[10] M. Amini, A. Tarassoli, S. Yousefi, et al., Suzuki-Miyaura cross-coupling reactions in water using in situ generated palladium(Ⅱ)-phosphazane complexes, Chin. Chem. Lett. 25(2014) 166-168.
-
[11]
[11] M. Bakherad, A. Keivanloo, B. Bahramian, S. Jajarmi, Suzuki, Heck, and copper-free Sonogashira reactions catalyzed by 4-amino-5-methyl-3-thio-1, 2, 4-triazolefunctionalized polystyrene resin-supported Pd(Ⅱ) under aerobic conditions in water, J. Organomet. Chem. 724(2013) 206-212.
-
[12]
[12] Y.H. Qin, Y. Jiang, H.H. Yang, et al., Synthesis of highly dispersed and active palladium/carbon nanofiber catalyst for formic acid electrooxidation, J. Power Sources 196(2011) 4609-4612.
-
[13]
[13] Y.S. Feng, X.Y. Lin, J. Hao, H.J. Xu, Pd-Co bimetallic nanoparticles supported on graphene as a highly active catalyst for Suzuki-Miyaura and Sonogashira crosscoupling reactions, Tetrahedron 70(2014) 5249-5253.
-
[14]
[14] S. Keesara, S. Parvathaneni, G. Dussa, M.R. Mandapati, Polystyrene supported thiopseudourea Pd (Ⅱ) complex:applications for Sonogashira, Suzuki-Miyaura, Heck, Hiyama and Larock heteroannulation reactions, J. Organomet. Chem. 765(2014) 31-38.
-
[15]
[15] L.J. Shao, C.Z. Qi, Supported palladium nanoparticles on preoxidated polyacrylonitrile fiber mat for coupling reactions, Fibers Polym. 15(2014) 2233-2237.
-
[16]
[16] M. Ghiaci, D. Valikhani, Z. Sadeghi, Synthesis and characterization of silicasupported Pd nanoparticles and its application in the Heck reaction, Chin. Chem. Lett. 23(2012) 887-890.
-
[17]
[17] H. Yang, D. Shi, S.F. Ji, D.N. Zhang, X.F. Liu, Nanosized Pd assembled on superparamagnetic core-shell microspheres:synthesis, characterization and recyclable catalytic properties for the Heck reaction, Chin. Chem. Lett. 25(2014) 1265-1270.
-
[18]
[18] S. Jadhava, A. Kumbharb, R. Salunkhe, Palladium supported on silica-chitosan hybrid material (Pd-CS@SiO2) for Suzuki-Miyaura and Mizoroki-Heck crosscoupling reactions, Appl. Organomet. Chem. 29(2015) 339-345.
-
[19]
[19] C.C. Huang, C. Li, G.Q. Shi, Graphene based catalysts, Energy Environ. Sci. 5(2012) 8848-8868.
-
[20]
[20] T. Van Haasterecht, C.C.(Ⅰ). Ludding, K.P. De Jong, J.H. Bitter, Stability and activity of carbon nanofiber-supported catalysts in the aqueous phase reforming of ethylene glycol, J. Energy Chem. 22(2013) 257-269.
-
[21]
[21] L.J. Shao, C.Z. Qi, Preoxidated polyacrylonitrile fiber mats supported copper catalyst for Mizoroki-Heck cross-coupling reactions, Appl. Catal. A 468(2013) 26-31.
-
[22]
[22] J. Kang, R.R. Han, J. Wang, et al., (Ⅰ)n situ synthesis of nickel carbide-promoted nickel/carbon nanofibers nanocomposite catalysts for catalytic applications, Chem. Eng. J. 275(2015) 36-44.
-
[23]
[23] Z.Y. Wu, X.X. Xu, B.C. Hu, et al., (Ⅰ)ron carbide nanoparticles encapsulated in mesoporous Fe-N-Doped carbon nanofibers for efficient electrocatalysis, Angew. Chem. (Ⅰ)nt. Ed. 54(2015) 8179-8183.
-
[24]
[24] J. Zhu, J.H. Zhou, T.J. Zhao, et al., Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction, Appl. Catal. A 352(2009) 243-250.
-
[25]
[25] X.W. Peng, W. Ye, Y.C. Ding, et al., Facile synthesis, characterization and application of highly active palladium nano-network structures supported on electrospun carbon nanofibers, RSC Adv. 4(2014) 42732-42736.
-
[26]
[26] L.P. Guo, J. Bai, C.P. Li, et al., Fabrication of palladium nanoparticles-loaded carbon nanofibers catalyst for the Heck reaction, N. J. Chem. 37(2013) 4037-4044.
-
[27]
[27] W.X. Zhang, J. Liu, G. Wu, Evolution of structure and properties of PAN precursors during their conversion to carbon fibers, Carbon 41(2003) 2805-2812.
-
[28]
[28] C.Y. Su, J. Liu, C.L. Shao, Y.C. Liu, Controlled synthesis of PAN/Ag2S composites nanofibers via electrospinning-assisted hydro (solvo) thermal method, J. Non-Cryst. Solids 357(2011) 1488-1493.
-
[29]
[29] Y. Wang, J. Liu, J.Y. Liang, Thermo-chemical reactions of modified PAN fibers during heat-treatment process, Adv. Mater. Res. 11-12(2006) 73-76.
-
[30]
[30] L.P. Guo, J. Bai, J.Z. Wang, et al., Fabricating series of controllable-porosity carbon nanofibers-based palladium nanoparticles catalyst with enhanced performances and reusability, J. Mol. Catal. 400(2015) 95-103.
-
[31]
[31] S.J. Zhang, S.X. Chen, Q.K. Zhang, P.Y. Li, C.E. Yuan, Preparation and characterization of an ion exchanger based on semi-carbonized polyacrylonitrile fiber, React. Funct. Polym. 68(2008) 891-898.
-
[1]
-
-
-
[1]
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
-
[2]
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
-
[3]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[4]
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
-
[5]
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
-
[6]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[7]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[8]
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
-
[9]
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
-
[10]
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
-
[11]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[12]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[13]
Cong Gao , Zijian Zhu , Siwei Li , Zheng Xi , Qingqing Sun , Jie Han , Rong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968
-
[14]
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
-
[15]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[16]
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
-
[17]
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
-
[18]
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
-
[19]
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
-
[20]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(661)
- HTML views(24)