Citation:
Ming-Xian Liu, Ling-Yan Chen, Da-Zhang Zhu, Hui Duan, Wei Xiong, Zi-Jie Xu, Li-Hua Gan, Long-Wu Chen. Zinc tartrate oriented hydrothermal synthesis of microporous carbons for high performance supercapacitor electrodes[J]. Chinese Chemical Letters,
;2016, 27(03): 399-404.
doi:
10.1016/j.cclet.2015.12.026
-
A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc-organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks of resorcinol/formaldehyde polymer under hydrothermal condition. After carbonization process, the resultant microporous carbons achieve high surface area (up to 1255 m2/g) and large mean pore size (1.99 nm) which guarantee both high specific capacitance (225 F/g at 1.0 A/g) and fast charge/discharge operation (20 A/g) when used as a supercapacitor electrode. Besides, the carbon electrode shows good cycling stability, with 93% capacitance retention at 1.0 A/g after 1000 cycles. The welldesigned and high-performance microporous carbons provide important prospects for supercapacitor applications.
-
-
-
[1]
[1] (a) H.W. Zhang, L. Zhou, O. Noonan, et al., Tailoring the void size of iron oxide@carbon yolk-shell structure for optimized lithium storage, Adv. Funct. Mater. 24(2014) 4337-4342;
-
[2]
(b) G.Q. Zhang, B.Y. Xia, C. Xiao, et al., General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries, Angew. Chem. (Ⅰ)nt. Ed. 52(2013) 8643-8647;
-
[3]
(c) J.F. Ye, W. Liu, J.G. Cai, et al., Nanoporous anatase TiO2 mesocrystals:additivefree synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior, J. Am. Chem. Soc. 133(2011) 933-940;
-
[4]
(d) H. Jiang, P.S. Lee, C.Z. Li, 3D carbon based nanostructures for advanced supercapacitors, Energy Environ. Sci. 6(2013) 41-53;
-
[5]
(e) M.X. Liu, X.M. Ma, L.H. Gan, et al., A facile synthesis of novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries, J. Mater. Chem. A 2(2014) 17107-17114;
-
[6]
(f) J.H. Zhu, M.J. Chen, N. Yerra, et al., Microwave synthesized magnetic tubular carbon nanocomposite fabrics toward electrochemical energy storage, Nanoscale 5(2013) 1825-1830;
-
[7]
(g) M.X. Liu, L.H. Gan, Y. Li, et al., Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilica-embedded emulsion-templated polymerization, Chin. Chem. Lett. 25(2014) 897-901.
-
[8]
[2] (a) Z.N. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials:nanostructures from 0 to 3 dimensions, Energy Environ. Sci. 8(2015) 702-730;
-
[9]
(b) Z.J. Fan, J. Yan, T. Wei, et al., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater. 21(2011) 2366-2375;
-
[10]
(c) D.Z. Zhu, Y.W. Wang, L.H. Gan, et al., Nitrogen-containing carbon microspheres for supercapacitor electrodes, Electrochim. Acta 158(2015) 166-174;
-
[11]
(d) M.X. Liu, L.H. Gan, W. Xiong, et al., Partially graphitic micro-and mesoporous carbon microspheres for supercapacitors, Chin. Chem. Lett. 24(2013) 1037-1040.
-
[12]
[3] (a) Y.H. Zhao, M.X. Liu, X.X. Deng, et al., Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode, Electrochim. Acta 153(2015) 448-455;
-
[13]
(b) J.K. Chang, M.T. Lee, W.T. Tsai, et al., Pseudocapacitive mechanism of manganese oxide in 1-ethyl-3-methylimidazolium thiocyanate ionic liquid electrolyte studied using X-ray photoelectron spectroscopy, Langmuir 25(2009) 11955-11960;
-
[14]
(c) X.M. Ma, L.H. Gan, M.X. Liu, et al., Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes, J. Mater. Chem. A 2(2014) 8407-8415.
-
[15]
[4] (a) Z.S. Wu, D.W. Wang, W.C. Ren, et al., Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors, Adv. Funct. Mater. 20(2010) 3595-3602;
-
[16]
(b) M.X. Liu, L.H. Gan, W. Xiong, et al., Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors, Energy Fuels 27(2013) 1168-1173.
-
[17]
[5] (a) Y.F. Yan, Q.L. Cheng, Z.J. Zhu, et al., Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes, J. Power Sources 240(2013) 544-550;
-
[18]
(b) G. Otrokhov, D. Pankratov, G. Shumakovich, et al., Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application, Electrochim. Acta 123(2014) 151-157;
-
[19]
(c) M.X. Liu, L.H. Gan, W. Xiong, et al., Development of MnO2/porous carbon microspheres with apartially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A 2(2014) 2555-2562.
-
[20]
[6] P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon electrolyte systems, Acc. Chem. Res. 46(2013) 1094-1103.
-
[21]
[7] (a) J.S. Qian, M.X. Liu, L.H. Gan, et al., A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage, Chem. Commun. 49(2013) 3043-3045;
-
[22]
(b) L. Jiang, J.W. Yan, L.X. Hao, et al., High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors, Carbon 56(2013) 146-154;
-
[23]
(c) Y.S. Yun, S.Y. Cho, J.Y. Shim, et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors, Adv. Mater. 25(2013) 1993-1998;
-
[24]
(d) C.X. Zhang, D.H. Long, B.L. Xing, et al., The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal, Electrochem. Commun. 10(2008) 1809-1811.
-
[25]
[8] Y.H. Zhao, M.X. Liu, L.H. Gan, et al., Ultramicroporous carbon nanoparticles for the high-performance electrical double-layer capacitor electrode, Energy Fuels 28(2014) 1561-1568.
-
[26]
[9] (a) L.M. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small 8(2012) 1130-1166;
-
[27]
(b) H. Jiang, J. Ma, C.Z. Li, Mesoporous carbon incorporated metal oxidenanomaterials as supercapacitor electrodes, Adv. Mater. 24(2012) 4197-4202;
-
[28]
(c) W. Li, F. Zhang, Y.Q. Dou, et al., A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes, Adv. Energy Mater. 1(2011) 382-386.
-
[29]
[10] (a) B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J. Am. Chem. Soc. 130(2008) 5390-5391;
-
[30]
(b) H.L. Jiang, B. Liu, Y.Q. Lan, et al., From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake, J. Am. Chem. Soc. 133(2011) 11854-11857;
-
[31]
(c) H. (Ⅰ)toi, H. Nishihara, T. Kogure, T. Kyotani, Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor, J. Am. Chem. Soc. 133(2011) 1165-1167;
-
[32]
(d) B. Xu, S.S. Hou, H. Duan, et al., Ultramicroporous carbon as electrode material for supercapacitors, J. Power Sources 228(2013) 193-197;
-
[33]
(e) M.X. Liu, J.S. Qian, Y.H. Zhao, et al., Core-shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, J. Mater. Chem. A 3(2015) 11517-11526;
-
[34]
(f) N.M. Pereira, P.M.V. Fernandes, C.M. Pereira, et al., Electrodeposition of zinc from choline chloride-ethylene glycol deep eutectic solvent:effect of the tartrate ion, J. Electrochem. Soc. 159(2012) D501-D506;
-
[35]
(g) J. Geng, X.D. Jia, J.J. Zhu, Sonochemical selective synthesis of ZnO/CdS core/shell nanostructures and their optical properties, Cryst. Eng. Commun. 13(2011) 193-198;
-
[36]
(h) G. Srinivas, V. Krungleviciute, Z.X. Guo, T. Yildirim, Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume, Energy Environ. Sci. 7(2014) 335-342.
-
[37]
[11] K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57(1985) 603-619.
-
[38]
[12] (a) W.J. Gao, Y. Wan, Y.Q. Dou, D.Y. Zhao, Synthesis of partially graphitic ordered mesoporous carbons with high surface areas, Adv. Eng. Mater. 1(2011) 115-123;
-
[39]
(b) P. Simon, Y. Gogotsi,Materials for electrochemical capacitors, Nat.Mater. 7(2008) 845-854;
-
[40]
(c) P. Yadav, A. Banerjee, S. Unni, et al., A 3D hexaporous carbon assembled from single-layer graphene as high performance supercapacitor, Chem-SusChem 5(2012) 2159-2164.
-
[41]
[13] D.S. Yuan, J.X. Chen, S.X. Tan, N.N. Xia, Y.L. Liu, Worm-like mesoporous carbon synthesized from metal-organic coordination polymers for supercapacitors, Electrochem. Commun. 11(2009) 1191-1194.
-
[42]
[14] S.M. Paek, E. Yoo, (Ⅰ). Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett. 9(2009) 72-75.
-
[43]
[15] (a) W. Xiong, M.X. Liu, L.H. Gan, et al., A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes, J. Power Sources 196(2011) 10461-10464;(b) Q. Wang, Q. Cao, X.Y. Wang, et al., A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors, J. Power Sources 225(2013) 101-107;
-
[44]
(c) Q.H. Wang, L.F. Jiao, H.M. Du, Y.J. Wang, H.T. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors, J. Power Sources 245(2014) 101-106.
-
[45]
[16] (a) C. Merlet, B. Rotenberg, P.A. Madden, et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nat. Mater. 11(2012) 306-310;
-
[46]
(b) K. Xie, X.T. Qin, X.Z. Wang, Y.Y. Xia, Carbon nanocages as supercapacitor electrode materials, Adv. Mater. 24(2012) 347-352.
-
[47]
[17] (a) H.J. Liu, J. Wang, C.X. Wang, et al., Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor, Adv. Energy Mater. 1(2011) 1101-1108;
-
[48]
(b) X.M. Ma, M.X. Liu, L.H. Gan, Y.H. Zhao, L.W. Chen, Synthesis of micro-and mesoporous carbon spheres for supercapacitor electrode, J. Solid State Electrochem. 17(2013) 2293-2301;
-
[49]
(c) Y.K. Lv, L.H. Gan, M.X. Liu, et al., A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, J. Power Sources 209(2012) 152-157.
-
[50]
[18] Y.Y. Lv, F. Zhang, Y.Q. Dou, et al., A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application, J. Mater. Chem. 22(2012) 93-99.
-
[51]
[19] D. Feng, Y.Y. Lv, Z.X. Wu, et al., Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices, J. Am. Chem. Soc. 133(2011) 15148-15156.
-
[52]
[20] D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. (Ⅰ)nt. Ed. 47(2008) 373-376.
-
[1]
-
-
-
[1]
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
-
[2]
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
-
[3]
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
-
[4]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[5]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[6]
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
-
[7]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[8]
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
-
[9]
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
-
[10]
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
-
[11]
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
-
[12]
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
-
[13]
Chengmin Hu , Pingxuan Liu , Ziyang Song , Yaokang Lv , Hui Duan , Li Xie , Ling Miao , Mingxian Liu , Lihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381
-
[14]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[15]
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
-
[16]
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
-
[17]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
-
[18]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[19]
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
-
[20]
Zhenqiang Guo , Huicong Yang , Qian Wei , Shengjun Xu , Guangjian Hu , Shuo Bai , Feng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(700)
- HTML views(43)