Citation: Ming-Xian Liu, Ling-Yan Chen, Da-Zhang Zhu, Hui Duan, Wei Xiong, Zi-Jie Xu, Li-Hua Gan, Long-Wu Chen. Zinc tartrate oriented hydrothermal synthesis of microporous carbons for high performance supercapacitor electrodes[J]. Chinese Chemical Letters, ;2016, 27(03): 399-404. doi: 10.1016/j.cclet.2015.12.026 shu

Zinc tartrate oriented hydrothermal synthesis of microporous carbons for high performance supercapacitor electrodes

  • Corresponding author: Li-Hua Gan, 
  • Received Date: 28 September 2015
    Available Online: 21 December 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (Nos.21207099, 21273162, 21473122) (Nos.21207099, 21273162, 21473122) the Fundamental Research Funds for the Central Universities, and the Large Equipment Test Foundation of Tongji University. (No.14DZ2261100)

  • A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc-organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks of resorcinol/formaldehyde polymer under hydrothermal condition. After carbonization process, the resultant microporous carbons achieve high surface area (up to 1255 m2/g) and large mean pore size (1.99 nm) which guarantee both high specific capacitance (225 F/g at 1.0 A/g) and fast charge/discharge operation (20 A/g) when used as a supercapacitor electrode. Besides, the carbon electrode shows good cycling stability, with 93% capacitance retention at 1.0 A/g after 1000 cycles. The welldesigned and high-performance microporous carbons provide important prospects for supercapacitor applications.
  • 加载中
    1. [1]

      [1] (a) H.W. Zhang, L. Zhou, O. Noonan, et al., Tailoring the void size of iron oxide@carbon yolk-shell structure for optimized lithium storage, Adv. Funct. Mater. 24(2014) 4337-4342;

    2. [2]

      (b) G.Q. Zhang, B.Y. Xia, C. Xiao, et al., General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries, Angew. Chem. (Ⅰ)nt. Ed. 52(2013) 8643-8647;

    3. [3]

      (c) J.F. Ye, W. Liu, J.G. Cai, et al., Nanoporous anatase TiO2 mesocrystals:additivefree synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior, J. Am. Chem. Soc. 133(2011) 933-940;

    4. [4]

      (d) H. Jiang, P.S. Lee, C.Z. Li, 3D carbon based nanostructures for advanced supercapacitors, Energy Environ. Sci. 6(2013) 41-53;

    5. [5]

      (e) M.X. Liu, X.M. Ma, L.H. Gan, et al., A facile synthesis of novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries, J. Mater. Chem. A 2(2014) 17107-17114;

    6. [6]

      (f) J.H. Zhu, M.J. Chen, N. Yerra, et al., Microwave synthesized magnetic tubular carbon nanocomposite fabrics toward electrochemical energy storage, Nanoscale 5(2013) 1825-1830;

    7. [7]

      (g) M.X. Liu, L.H. Gan, Y. Li, et al., Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilica-embedded emulsion-templated polymerization, Chin. Chem. Lett. 25(2014) 897-901.

    8. [8]

      [2] (a) Z.N. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials:nanostructures from 0 to 3 dimensions, Energy Environ. Sci. 8(2015) 702-730;

    9. [9]

      (b) Z.J. Fan, J. Yan, T. Wei, et al., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater. 21(2011) 2366-2375;

    10. [10]

      (c) D.Z. Zhu, Y.W. Wang, L.H. Gan, et al., Nitrogen-containing carbon microspheres for supercapacitor electrodes, Electrochim. Acta 158(2015) 166-174;

    11. [11]

      (d) M.X. Liu, L.H. Gan, W. Xiong, et al., Partially graphitic micro-and mesoporous carbon microspheres for supercapacitors, Chin. Chem. Lett. 24(2013) 1037-1040.

    12. [12]

      [3] (a) Y.H. Zhao, M.X. Liu, X.X. Deng, et al., Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode, Electrochim. Acta 153(2015) 448-455;

    13. [13]

      (b) J.K. Chang, M.T. Lee, W.T. Tsai, et al., Pseudocapacitive mechanism of manganese oxide in 1-ethyl-3-methylimidazolium thiocyanate ionic liquid electrolyte studied using X-ray photoelectron spectroscopy, Langmuir 25(2009) 11955-11960;

    14. [14]

      (c) X.M. Ma, L.H. Gan, M.X. Liu, et al., Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes, J. Mater. Chem. A 2(2014) 8407-8415.

    15. [15]

      [4] (a) Z.S. Wu, D.W. Wang, W.C. Ren, et al., Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors, Adv. Funct. Mater. 20(2010) 3595-3602;

    16. [16]

      (b) M.X. Liu, L.H. Gan, W. Xiong, et al., Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors, Energy Fuels 27(2013) 1168-1173.

    17. [17]

      [5] (a) Y.F. Yan, Q.L. Cheng, Z.J. Zhu, et al., Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes, J. Power Sources 240(2013) 544-550;

    18. [18]

      (b) G. Otrokhov, D. Pankratov, G. Shumakovich, et al., Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application, Electrochim. Acta 123(2014) 151-157;

    19. [19]

      (c) M.X. Liu, L.H. Gan, W. Xiong, et al., Development of MnO2/porous carbon microspheres with apartially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A 2(2014) 2555-2562.

    20. [20]

      [6] P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon electrolyte systems, Acc. Chem. Res. 46(2013) 1094-1103.

    21. [21]

      [7] (a) J.S. Qian, M.X. Liu, L.H. Gan, et al., A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage, Chem. Commun. 49(2013) 3043-3045;

    22. [22]

      (b) L. Jiang, J.W. Yan, L.X. Hao, et al., High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors, Carbon 56(2013) 146-154;

    23. [23]

      (c) Y.S. Yun, S.Y. Cho, J.Y. Shim, et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors, Adv. Mater. 25(2013) 1993-1998;

    24. [24]

      (d) C.X. Zhang, D.H. Long, B.L. Xing, et al., The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal, Electrochem. Commun. 10(2008) 1809-1811.

    25. [25]

      [8] Y.H. Zhao, M.X. Liu, L.H. Gan, et al., Ultramicroporous carbon nanoparticles for the high-performance electrical double-layer capacitor electrode, Energy Fuels 28(2014) 1561-1568.

    26. [26]

      [9] (a) L.M. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small 8(2012) 1130-1166;

    27. [27]

      (b) H. Jiang, J. Ma, C.Z. Li, Mesoporous carbon incorporated metal oxidenanomaterials as supercapacitor electrodes, Adv. Mater. 24(2012) 4197-4202;

    28. [28]

      (c) W. Li, F. Zhang, Y.Q. Dou, et al., A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes, Adv. Energy Mater. 1(2011) 382-386.

    29. [29]

      [10] (a) B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J. Am. Chem. Soc. 130(2008) 5390-5391;

    30. [30]

      (b) H.L. Jiang, B. Liu, Y.Q. Lan, et al., From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake, J. Am. Chem. Soc. 133(2011) 11854-11857;

    31. [31]

      (c) H. (Ⅰ)toi, H. Nishihara, T. Kogure, T. Kyotani, Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor, J. Am. Chem. Soc. 133(2011) 1165-1167;

    32. [32]

      (d) B. Xu, S.S. Hou, H. Duan, et al., Ultramicroporous carbon as electrode material for supercapacitors, J. Power Sources 228(2013) 193-197;

    33. [33]

      (e) M.X. Liu, J.S. Qian, Y.H. Zhao, et al., Core-shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, J. Mater. Chem. A 3(2015) 11517-11526;

    34. [34]

      (f) N.M. Pereira, P.M.V. Fernandes, C.M. Pereira, et al., Electrodeposition of zinc from choline chloride-ethylene glycol deep eutectic solvent:effect of the tartrate ion, J. Electrochem. Soc. 159(2012) D501-D506;

    35. [35]

      (g) J. Geng, X.D. Jia, J.J. Zhu, Sonochemical selective synthesis of ZnO/CdS core/shell nanostructures and their optical properties, Cryst. Eng. Commun. 13(2011) 193-198;

    36. [36]

      (h) G. Srinivas, V. Krungleviciute, Z.X. Guo, T. Yildirim, Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume, Energy Environ. Sci. 7(2014) 335-342.

    37. [37]

      [11] K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57(1985) 603-619.

    38. [38]

      [12] (a) W.J. Gao, Y. Wan, Y.Q. Dou, D.Y. Zhao, Synthesis of partially graphitic ordered mesoporous carbons with high surface areas, Adv. Eng. Mater. 1(2011) 115-123;

    39. [39]

      (b) P. Simon, Y. Gogotsi,Materials for electrochemical capacitors, Nat.Mater. 7(2008) 845-854;

    40. [40]

      (c) P. Yadav, A. Banerjee, S. Unni, et al., A 3D hexaporous carbon assembled from single-layer graphene as high performance supercapacitor, Chem-SusChem 5(2012) 2159-2164.

    41. [41]

      [13] D.S. Yuan, J.X. Chen, S.X. Tan, N.N. Xia, Y.L. Liu, Worm-like mesoporous carbon synthesized from metal-organic coordination polymers for supercapacitors, Electrochem. Commun. 11(2009) 1191-1194.

    42. [42]

      [14] S.M. Paek, E. Yoo, (Ⅰ). Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett. 9(2009) 72-75.

    43. [43]

      [15] (a) W. Xiong, M.X. Liu, L.H. Gan, et al., A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes, J. Power Sources 196(2011) 10461-10464;(b) Q. Wang, Q. Cao, X.Y. Wang, et al., A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors, J. Power Sources 225(2013) 101-107;

    44. [44]

      (c) Q.H. Wang, L.F. Jiao, H.M. Du, Y.J. Wang, H.T. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors, J. Power Sources 245(2014) 101-106.

    45. [45]

      [16] (a) C. Merlet, B. Rotenberg, P.A. Madden, et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nat. Mater. 11(2012) 306-310;

    46. [46]

      (b) K. Xie, X.T. Qin, X.Z. Wang, Y.Y. Xia, Carbon nanocages as supercapacitor electrode materials, Adv. Mater. 24(2012) 347-352.

    47. [47]

      [17] (a) H.J. Liu, J. Wang, C.X. Wang, et al., Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor, Adv. Energy Mater. 1(2011) 1101-1108;

    48. [48]

      (b) X.M. Ma, M.X. Liu, L.H. Gan, Y.H. Zhao, L.W. Chen, Synthesis of micro-and mesoporous carbon spheres for supercapacitor electrode, J. Solid State Electrochem. 17(2013) 2293-2301;

    49. [49]

      (c) Y.K. Lv, L.H. Gan, M.X. Liu, et al., A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, J. Power Sources 209(2012) 152-157.

    50. [50]

      [18] Y.Y. Lv, F. Zhang, Y.Q. Dou, et al., A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application, J. Mater. Chem. 22(2012) 93-99.

    51. [51]

      [19] D. Feng, Y.Y. Lv, Z.X. Wu, et al., Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices, J. Am. Chem. Soc. 133(2011) 15148-15156.

    52. [52]

      [20] D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. (Ⅰ)nt. Ed. 47(2008) 373-376.

  • 加载中
    1. [1]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    2. [2]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    3. [3]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    4. [4]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    7. [7]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    8. [8]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    9. [9]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    10. [10]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    11. [11]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    12. [12]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    13. [13]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    14. [14]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    15. [15]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    16. [16]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    17. [17]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    18. [18]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    19. [19]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    20. [20]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

Metrics
  • PDF Downloads(0)
  • Abstract views(700)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return