Citation:
Manisha R. Bhosle, Lalit D. Khillare, Sambhaji T. Dhumal, Ramrao A. Mane. A facile synthesis of 6-amino-2H, 4H-pyrano[2,3-c]pyrazole-5-carbonitriles in deep eutectic solvent[J]. Chinese Chemical Letters,
;2016, 27(03): 370-374.
doi:
10.1016/j.cclet.2015.12.005
-
A convenient synthesis of 6-amino-2H,4H-pyrano[2,3-c]pyrazole-5-carbonitriles has been accomplished by one pot four-component cyclocondensation of aromatic aldehydes (1a-o) malanonitrile (2), ethyl acetoacetate (3), and hydrazine hydrate (4) in freshly prepared deep eutectic solvent, DES (choline chloride:urea). This protocol has afforded corresponding pyrano[2,3-c]pyrazoles in shorter reaction time with high yields, and it avoids the use of typical toxic catalysts and solvents.
-
Keywords:
- Choline chloride,
- Cyclocondensation,
- DES,
- One pot,
- Urea,
- Pyranopyrazoles
-
-
-
[1]
[1] (a) A. Matin, N. Gavande, M.S. Kim, et al., 7-Hydroxy-benzopyran-4-one derivatives:a novel pharmacophore of peroxisome proliferator-activated receptor α and-γ (PPAR α and γ) dual agonists, J. Med. Chem. 52(2009) 6835-6850;
-
[2]
(b) E.M. Priego, J.V.F.D. Kuenzel, A.P. (Ⅰ)Jzerman, M.J. Camarasa, M.J. Perez, Pyrido[2,1-f]purine-2,4-dione derivatives as a novel class of highly potent human A3 adenosine receptor antagonists, J. Med. Chem. 45(2002) 3337-3344;
-
[3]
(c) S.A. Galal, A.S.A. El-All, M.M. Abdallah, H.(Ⅰ). El-Diwani, Synthesis of potent antitumor and antiviral benzofuran derivatives, Bioorg. Med. Chem. Lett. 19(2009) 2420-2428.
-
[4]
[2] J.D. Hepworth, Pyrans and fused pyrans:synthesis and applications, in:A.R. Katrizky, C.W. Rees (Eds.), Comprehensive Heterocyclic Chemistry, vol. 3, Pergamon, Oxford, 1984, p. 737.
-
[5]
[3] E.S. El-Tamany, F.A. El-Shahed, B.H. Mohamed, Synthesis and biological activity of some pyrazole derivatives, J. Serb. Chem. Soc. 64(1999) 9-18.
-
[6]
[4] (a) K. Konishi, T. Kuragano, A. Nohara, N.G. Nippon, Fungicidal activity of 2-aminochromone-3-carboxamides, J. Pestic. Sci. 15(1990) 241-244;
-
[7]
(b) S.Y. Liao, L. Qian, T.F. Miao, Y. Shen, K.C. Zheng, 3D-QSAR studies of substituted 4-aryl/heteroaryl-4h-chromenes as apoptosis inducers using comfa and comsia, J. Theor. Comput. Chem. 8(2009) 143-148;
-
[8]
(c) W. Kemnitzer, S. Jiang, Y.Wang, et al.,Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based HTS assay. Part 5:Modifications of the 2-and 3-positions, Bioorg. Med. Chem. Lett. 18(2008) 603-607;
-
[9]
(d) W. Kemnitzer, J.Drewe, S. Jiang, et al., Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based high throughput screening assay. 4. Structure-activity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions, J. Med. Chem. 51(2008) 417-423.
-
[10]
[5] N. Martin, C. Pascual, C. Seoane, J.L. Soto, The use of some activated nitriles in heterocyclic syntheses, Heterocycles 26(1987) 2811-2816.
-
[11]
[6] A.V. Stachulski, N.G. Berry, A.C.L. Low, et al., (Ⅰ)dentification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo, J. Med. Chem. 49(2006) 1450-1454.
-
[12]
[7] (a) W.P. Smith, L.S. Sollis, D.P. Howes, et al., Dihydropyrancarboxamides related to zanamivir:a new series of inhibitors of influenza virus sialidases. 1. discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidinoand 4-amino-4H-pyran-6-carboxamides, J. Med. Chem. 41(1998) 787-797;
-
[13]
(b) K. Mazaahir, S. Shilpi, R.K. Khalilur, S.T. Sharanjit, Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents, Bioorg. Med. Chem. Lett. 15(2005) 4295-4298.
-
[14]
[8] J.L. Wang, D. Liu, Z.J. Zheng, et al., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U.S.A. 97(2000) 7124-7129.
-
[15]
[9] (a) M.E.A. Zaki, H.A. Saliman, O.A. Hickal, A.E. Rashad, Pyrazolopyranopyrimidines as a class of anti-inflammatory agents, J. Biosci. 61(2006) 1-5;
-
[16]
(b) C.K. Sheng, J.H. Li, N. Hideo, Studies on heterocyclic compounds. 6 Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives, J. Med. Chem. 27(1984) 539-544.
-
[17]
[10] N. Foloppe, L.M. Fisher, R. Howes, et al., (Ⅰ)dentification of chemically diverse Chk1 inhibitors by receptor-based virtual screening, Bioorg. Med. Chem. 14(2006) 4792-4802.
-
[18]
[11] Y.M. Litvinov, L.A. Rodinovskaya, A.M. Shestopalov, A new convenient four-component synthesis of 6-amino-2H, 4H-pyrano[2,3-c]pyrazole-5-carbonitriles and onepot synthesis of 6'-amino-5-cyano-1,2-dihydrospiro-[(3H)-indole-3,4'-(4'H)-pyrano[2,3-c]pyrazol]-2-ones, Russ. Chem. Bull. (Ⅰ)nt. Ed. 58(2009) 2362-2368.
-
[19]
[12] K. Kanagaraj, K. Pitchumani, Solvent-free multicomponent synthesis of pyranopyrazoles:per-6-amino-β-cyclodextrin as a remarkable catalyst and host, Tetrahedron Lett. 51(2010) 3312-3316.
-
[20]
[13] M.B.M. Reddy, V.P. Jayashankara, M.A. Pasha, Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction, Synth. Commun. 40(2010) 2930-2934.
-
[21]
[14] H. Mecadon, M.R. Rohman, M. Rajbangshi, B. Myrboh, γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium, Tetrahedron Lett. 52(2011) 2523-2525.
-
[22]
[15] H. Mecadon, M.R. Rohman, (Ⅰ). Kharbangar, et al.,L-Proline as an efficient catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in water, Tetrahedron Lett. 52(2011) 3228-3231.
-
[23]
[16] M. Babaie, H. Sheibani, Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction, Arabian J. Chem. 4(2011) 159-162.
-
[24]
[17] S.D. Samant, N.R. Patil, S.W. Kshirsagar, Mg-Al Hydrotalcite as a first heterogeneous basic catalyst for the synthesis of 4H-pyrano[2,3-c]pyrazoles through a four-component reaction, Synth. Commun. 41(2011) 1320-1325.
-
[25]
[18] F. Lehmann, S.L. Holm, M.S. Laufer, Three-component combinatorial synthesis of novel dihydropyrano[2,3-c]pyrazoles, J. Comb. Chem. 10(2008) 364-367.
-
[26]
[19] M.M. Heravi, A. Ghods, F. Derikvand, K. Bakhtiari, F.F. Bammoharram, H14[NaP5W30O110] catalyzed one-pot three-component synthesis of dihydropyrano[2,3-c]pyrazole and pyrano[2,3-d]pyrimidine derivatives, J. (Ⅰ)ran Chem. Soc. 7(2010) 615-620.
-
[27]
[20] H. Kiyani, H.A. Samimi, F. Ghorbani, S. Esmaieli, One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium, Curr. Chem. Lett. 2(2013) 197-206.
-
[28]
[21] M. Bihani, P.P. Bora, G. Bez, H. Askari, Amberlyst a21 catalyzed chromatographyfree method for multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles in ethanol, ACS Sustainable Chem. Eng. 1(2013) 440-447.
-
[29]
[22] G. Tacconi, G. Gatti, G. Desimoni, V. Messori, A new route to 4H-pyrano[2,3-c]pyrazoles,(Eine neue synthese für 4H-pyrano[2,3-c]pyrazole), J. Prakt. Chem. 322(1980) 831-834.
-
[30]
[23] (Ⅰ).T. Horvath, Solvents from nature, Green Chem. 10(2008) 1024-1028.
-
[31]
[24] R. Kumar, P. Chaudhary, S. Nimesh, R. Chandra, Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes, Green Chem. 8(2006) 356-358.
-
[32]
[25] (a) A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids:versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126(2004) 9142-9147;
-
[33]
(b) A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun. (2003) 70-71;
-
[34]
(c) E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114(2014) 11060-11082.
-
[35]
[26] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, (Ⅰ)onic liquids and their use as solvents, PCT (Ⅰ)nt. Appl. WO 0226701, 2002.
-
[36]
[27] Y.A. Sonawane, S.B. Phadtare, B.N. Borse, A.R. Jagtap, G.S. Shankarling, Synthesis of diphenylamine-based novel fluorescent styryl colorants by Knoevenagel condensation using a conventional method, biocatalyst, and beep eutectic solvent, Org. Lett. 12(2010) 1456-1459.
-
[37]
[28] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Quaternary ammonium zinc-or tin-containing ionic liquids:water insensitive, recyclable catalysts for Diels-Alder reactions, Green Chem. 4(2002) 24-26.
-
[38]
[29] R.C. Morales, V. Tambyrajah, P.R. Jenkins, D.L. Davies, A.P. Abbott, The regiospecific Fischer indole reaction in choline chloride 2ZnCl2 with product isolation by direct sublimation from the ionic liquid, Chem. Commun. (2004) 158-159.
-
[39]
[30] P.M. Pawar, K.J. Jarag, G.S. Shankarling, Environmentally benign and energy efficient methodology for condensation:an interesting facet to the classical Perkin reaction, Green Chem. 13(2011) 2130-2134.
-
[40]
[31] A.P. Abbott, T.J. Bell, S. Handa, B. Stoddart, O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid, Green Chem. 7(2005) 705-707.
-
[41]
[32] Z. Chen, W. Zhu, Z. Zheng, X. Zou, One-pot α-nucleophilic fluorination of acetophenones in a deep eutectic solvent, J. Fluorine Chem. 131(2010) 340-344.
-
[42]
[33] (a) S.B. Phadtare, G.S. Shankarling, Halogenation reactions in biodegradable solvent:efficient bromination of substituted 1-aminoanthra-9,10-quinone in deep eutectic solvent (choline chloride:urea), Green Chem. 12(2010) 458-462;
-
[43]
(b) A.S. Singh, S.S. Shendage, J.M. Nagarkar, Choline chloride based deep eutectic solvent as an efficient solvent for the benzylation of phenols, Tetrahedron Lett. 55(2014) 7243-7246.
-
[44]
[34] (a) M.R. Bhosle, J.R. Mali, A.A. Mulay, R.A. Mane, Polyethylene glycol mediated one-pot three-component synthesis of new 4-thiazolidinones, Heteroat. Chem. 23(2012) 166-170;
-
[45]
(b) M.R. Bhosle, A.R. Deshmukh, S. Pal, A.K. Srivastava, R.A. Mane, Synthesis of new thiazolylmethoxyphenyl pyrimidines and antihyperglycemic evaluation of the pyrimidines, analogues isoxazolines and pyrazolines, Bioorg. Med. Chem. Lett. 25(2015) 2442-2446;
-
[46]
(c) L.D. Khillare, M.R. Bhosle, A.R. Deshmukh, R.A. Mane, Synthesis and antiinflammatory evaluation of new pyrazoles bearing biodynamic thiazole and thiazolidinone scaffolds, Med. Chem. Res. 24(2015) 1380-1386.
-
[47]
[35] (a) Y. Peng, G. Song, R. Dou, Surface cleaning under combined microwave and ultrasound irradiation:flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media, Green Chem. 8(2006) 573-575;
-
[48]
(b) P.V. Shinde, J.B. Gujar, B.B. Shingate, M.S. Shingare, silica in water:a potentially valuable reaction medium for the synthesis of pyrano[2,3-c]pyrazoles, Bull. Korean Chem. Soc. 33(4) (2012) 1345-1348;
-
[49]
(c) A. Siddekha, A. Nizam, M.A. Pasha, An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4'-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory, Spectrochim. Acta A:Mol. Biomol. Spectrosc. 81(2011) 431-440;
-
[50]
(d) M. Reddy, M.A. Pasha, One-pot, multicomponent synthesis of 4H-pyrano[2,3-c]pyrazoles in water at 25℃, (Ⅰ)ndian J. Chem. 51(2012) 537-541;
-
[51]
(e) M. Reddy, V.P. Jayashan Kara, M.A. Pasha, Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction, Synth. Commun. 40(2010) 2930-2934;
-
[52]
(f) R.Y. Guo, Z.M. An, L.P. Mo, et al., Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives, Tetrahedron 69(2013) 9931-9938;
-
[53]
(g) Y.A. Tayade, S.A. Padvi, Y.B. Wagh, D.S. Dalal, β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4'-pyrano[2,3-F]pyrazole] in aqueous medium, Tetrahedron Lett. 56(2015) 2441-2447.
-
[1]
-
-
-
[1]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[2]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[3]
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
-
[4]
Ren Shen , Yanmei Fang , Chunxiao Yang , Quande Wei , Pui-In Mak , Rui P. Martins , Yanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143
-
[5]
Mengxing Liu , Jing Liu , Hongxing Zhang , Jianan Tao , Peiwen Fan , Xin Lv , Wei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994
-
[6]
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
-
[7]
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
-
[8]
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
-
[9]
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
-
[10]
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
-
[11]
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
-
[12]
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
-
[13]
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
-
[14]
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
-
[15]
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
-
[16]
Shicheng Dong , Jun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214
-
[17]
Yan Chen , Xinnan Wang , Yifan Lin , Chun Liu . Shape/dimension-controllable organic heterostructures from one monomer pair. Chinese Chemical Letters, 2025, 36(3): 109903-. doi: 10.1016/j.cclet.2024.109903
-
[18]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[19]
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
-
[20]
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(683)
- HTML views(30)