Citation:
Bo Li, Xu-Zhuo Sun. Dimensional effects of organic anion templates in modulating the assembly of water clusters in cucurbit[6]uril supramolecular systems[J]. Chinese Chemical Letters,
;2016, 27(03): 417-422.
doi:
10.1016/j.cclet.2015.12.003
-
Two new supramolecular architectures {(HC2O4)22-[C6H18N22+⊂C36H36N24O12]}·12H2O (1) and {(C6H5SO3)22-[C6H18N22+⊂C36H36N24O12]}·12H2O (2) were synthesized and characterized by singlecrystal X-ray diffraction, thermogravimetric analysis and X-ray powder diffraction. Compound 1 contains infinite two dimensional (2D) L18(8)14(8)8(4) type anion-water aggregates[(HC2O4)4 (H2O)22]4- and results in the construction of sandwich-like three dimensional (3D) networks. In compound 2, honeycomβ-like three dimensional (3D) networks are fabricated by one dimensional (1D) "W"-like T5(0)A2 type anion-water clusters[(C6H5SO3)(H2O)6]-. These results indicate that anionic groups play a crucial role in modulating the structures of water clusters with their spatial structure and binding sites. In these two structures, the majority of interactions are O...H and H...Hinteractions on the Hirshfeld surface, which means that hydrogen bonding and hydrophobic interactions are the dominate drive forces in forming these supramolecular systems.
-
Keywords:
- Cucurbit[6]uril,
- Supramolecular,
- Water clusters,
- Anion templates,
- Pseudorotaxane
-
-
-
[1]
[1] D. Eisenberg, W. Kauzmannc, The Structure and Properties of Water, Oxford University Press, Oxford, UK, 1969.
-
[2]
[2] P. Ball, H2O:a Biography of Water, Weidenfeld & Nicolson, London, 1999.
-
[3]
[3] R. Ludwig, Water:from clusters to the bulk, Angew. Chem. (Ⅰ)nt. Ed. 40(2001) 1808-1827.
-
[4]
[4] N. Pugliano, R.J. Saykally, Measurement of quantum tunneling between chiral isomers of the cyclic water trimer, Science 257(1992) 1937-1940.
-
[5]
[5] U. Buck, F. Huisken, (Ⅰ)nfrared spectroscopy of size-selected water and methanol clusters, Chem. Rev. 100(2000) 3863-3890.
-
[6]
[6] T. Head-Gordon, G. Hura, Water structure from scattering experiments and simulation, Chem. Rev. 102(2002) 2651-2670.
-
[7]
[7] X.B. Wang, X. Yang, J.B. Nicholas, L.S. Wang, Bulk-like features in the photoemission spectra of hydrated doubly charged anion clusters, Science 294(2001) 1322-1325.
-
[8]
[8] W.H. Robertson, E.G. Diken, E.A. Price, J.W. Shin, M.A. Johnson, Spectroscopic determination of the OH-solvation shell in the OH-·(H2O)n clusters, Science 299(2003) 1367-1372.
-
[9]
[9] R. Custelcean, M.G. Gorbunova, A metal-organic framework functionalized with free carboxylic acid sites and its selective binding of a Cl(H2O)4- cluster, J. Am. Chem. Soc. 127(2005) 16362-16363.
-
[10]
[10] C.K. Lam, F. Xue, J.P. Zhang, X.M. Chen, T.C.W. Mak, Hydrogen-Bonded anionic rosette networks assembled with guanidinium and C3-symmetric oxoanion building blocks, J. Am. Chem. Soc. 127(2005) 11536-11537.
-
[11]
[11] A. Bakhoda, H.R. Khavasi, N. Safari, Discrete cubane-like bromide-water cluster, Cryst. Growth Des. 11(2011) 933-935.
-
[12]
[12] M.A. Hossain, P. Morehouse, D. Powell, K. Bowman-James, Tritopic (Cascade) and ditopic complexes of halides with an azacryptand, (Ⅰ)norg. Chem. 44(2005) 2143-2149.
-
[13]
[13] Q.H. Pan, R.J. Tian, S.J. Liu, et al.,[Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O:a 5-connected sqp topological metal-organic framework co-templated by Co(NH3)63+ cation and (H2O)4 cluster, Chin. Chem. Lett. 24(2013) 861-865.
-
[14]
[14] G.G. Luo, S.H. Wu, Z.H. Pan, Z.J. Xiao, J.C. Dai, Formation of different polymeric water clusters via organic anionic templates:more carboxylate groups used, more water molecules gathered, (Ⅰ)norg. Chem. Comm. 39(2014) 34-38.
-
[15]
[15] G.G. Luo, H.B. Xiong, J.C. Dai, Syntheses, structural characterization, and properties of {[Cu(bpp)2(H2O)2] (tp)·7H2O} and {[Cu(bpp)2(H2O)](ip)·7H2O} complexes, New examples of the organic anionic template effect on induced assembly of water clusters (bpp=1, 3-Bis(4-pyridyl)propane, tp=Terephthalate, ip=(Ⅰ)sophthalate), Cryst. Growth Des. 11(2011) 507-515.
-
[16]
[16] S. Ganguly, R. Mondal, Coordination driven self-assembly in Co(Ⅱ) coordination polymers displaying unprecedented topology, water cluster, chirality, and spincanted magnetic behavior, Cryst. Growth Des. 15(2015) 2211-2222.
-
[17]
[17] (a) N. Nijem, P. Canepa, U. Kaipa, et al., Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework, J. Am. Chem. Soc. 135(2013) 12615-12626;
-
[18]
(b) H. (Ⅰ)sobe, S. Sato, E. Nakamura, Synthesis of disubstituted cucurbit[6] uril and its rotaxane derivative, Org. Lett. 4(2002) 1287-1289.
-
[19]
[18] (a) H. Yin, G. Hummer, J.C. Rasaiah, Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion, J. Am. Chem. Soc. 129(2007) 7369-7377;
-
[20]
(b) W.A. Freeman, W.L. Mock, N. Shih, Cucurbituril, J. Am. Chem. Soc. 103(1981) 7367-7368.
-
[21]
[19] (a) S. Parthasarathy, A. Altuve, S. Terzyan, et al., Accommodating a nonconservative internal mutation by water-mediated hydrogen bonding between β-sheet strands:a comparison of human and rat type B (Mitochondrial) cytochrome b5, Biochemistry 50(2011) 5544-5554;
-
[22]
(b) W.L. Mock, N. Shih, Organic ligand-receptor interactions between cucurbituril and alkylammonium ions, J. Am. Chem. Soc. 110(1988) 4706-4710.
-
[23]
[20] J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. (Ⅰ)saacs, The Cucurbit[n]uril family, Angew. Chem. (Ⅰ)nt. Ed. 44(2005) 4844-4870.
-
[24]
[21] E. Lee, J. Heo, K. Kim, A three-dimensional polyrotaxane network, Angew. Chem. (Ⅰ)nt. Ed. 39(2000) 2699-2701.
-
[25]
[22] E. Lee, J. Kim, J. Heo, D. Whang, K. Kim, A two-dimensional polyrotaxane with large cavities and channels:a novel approach to metal-organic open-frameworks by using supramolecular building blocks, Angew. Chem. (Ⅰ)nt. Ed. 40(2001) 399-402.
-
[26]
[23] S.G. Roh, K.M. Park, S. Sakamoto, K. Tamaguchi, K. Kim, Synthesis of a fivemembered molecular necklace:a 2+2 approach, Angew. Chem. (Ⅰ)nt. Ed. 38(1999) 637-641.
-
[27]
[24] K.M. Park, S.Y. Kim, J. Heo, et al., Designed self-assembly of molecular necklaces, J. Am. Chem. Soc. 124(2002) 2140-2147.
-
[28]
[25] M.V. Rekharsky, H. Yamamura, M. Kawai, et al., Sequential formation of a ternary complex among dihexylammonium, cucurbit[6] uril, and cyclodextrin with positive cooperativity, Org. Lett. 8(2006) 815-818.
-
[29]
[26] Y. Liu, X.Y. Li, H.Y. Zhang, C.J. Li, F. Ding, Cyclodextrin-driven movement of cucurbit[7] uril, J. Org. Chem. 72(2007) 3640-3645.
-
[30]
[27] X.Z. Sun, B. Li, J. Cao, et al., Pseudopolyrotaxanes of cucurbit[6] uril:a threedimensional network self-assembled by ClO4-(H2O)2- water clusters, Chin. J. Chem. 30(2012) 941-946.
-
[31]
[28] S. Angelos, Y.W. Yang, K. Patel, J.F. Stoddart, J.(Ⅰ). Zink, pH-Responsive supramolecular nanovalves based on cucurbit[6] uril, Angew. Chem. (Ⅰ)nt. Ed. 47(2008) 2222-2226.
-
[32]
[29] Y.W. Yang, Y.L. Sun, N. Song, Switchable host-guest systems on surfaces, Acc. Chem. Res. 47(2014) 1950-1960.
-
[33]
[30] X.Z. Sun, B. Li, Q.B. Zhou, et al., Pseudopolyrotaxanes of cucurbit[6] uril:a novel three-dimensional network self-assembled by (H2O)3 clusters and Br-(H2O)3 anion clusters, Cryst. Growth Des. 8(2008) 2970-2974.
-
[34]
[31] X.Z. Sun, B. Li, C.L. Xia, X.H. Zhou, H.B. Zhang, "Liquid-like" type (COO-)2(H2O)10 anion water clusters in three dimensional supramolecular structure of cucurbit[6] uril, CrystEngComm 14(2012) 8525-8529.
-
[35]
[32] L.J. Barbour, G.W. Orr, J.L. Atwood, An intermolecular (H2O)10 cluster in a solidstate supramolecular complex, Nature 393(1998) 671-673.
-
[36]
[33] R. Custalcean, C. Afloroaiei, M. Vlassa, M. Polverejan, Formation of extended tapes of cyclic water hexamers in an organic molecular crystal host, Angew. Chem. (Ⅰ)nt. Ed. 39(2000) 3094-3096.
-
[37]
[34] S.K. Seth, (Ⅰ). Saha, C. Estarellas, et al., Supramolecular self-assembly of M-(Ⅰ)DA complexes involving lone-pair·π interactions:crystal structures, hirshfeld surface analysis, and DFT calculations[H2(Ⅰ)DA=iminodiacetic acid.M=Cu(Ⅱ), Ni(Ⅱ)], Cryst. Growth Des. 11(2011) 3250-3265.
-
[38]
[35] M.A. Spackman, P.G. Byrom, A novel definition of a molecule in a crystal, Chem. Phys. Lett. 267(1997) 215-220.
-
[39]
[36] S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Crystal-Explorer 3.1, University of Western Australia, Perth, Australia, 2007.
-
[1]
-
-
-
[1]
Yongqing Zeng , Caijun Liang , Xin Lu , Lingxue Zhao , Fangting Wu , Tao Hou , Anting Zhao , Menglan Lv , Zhu Tao , Qing Li . Perfect separation of pyridine and 3-methylpyridine by cucurbit[6]uril. Chinese Chemical Letters, 2025, 36(9): 110807-. doi: 10.1016/j.cclet.2024.110807
-
[2]
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
-
[3]
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
-
[4]
Qian Liu , Yi Shi , Kaiya Wang , Xiao-Yu Hu . Tailoring cascade hydrolysis and cyclization efficiency in confined spaces via spatial and electrostatic regulation. Chinese Chemical Letters, 2025, 36(12): 111462-. doi: 10.1016/j.cclet.2025.111462
-
[5]
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
-
[6]
Ran Cen , Yan-Yan Tang , Li-Xia Chen , Zhu Tao , Xin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744
-
[7]
Jinchen Li , Tangxin Xiao , Kai Diao , Zhouyu Wang , Leyong Wang . Supramolecular catalysis enabled by chiral molecular cages with anion-π interaction capability. Chinese Chemical Letters, 2026, 37(1): 111796-. doi: 10.1016/j.cclet.2025.111796
-
[8]
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
-
[9]
Xingyue Yuan , Li Wu , Qiuyu Peng , Yanyan Tang , Mingxu Wang , Yuhang Wei , Zhu Tao , Xin Xiao . Developing color-tunable long afterglow anti-counterfeiting materials using cucurbit[6]uril and classical aggregation-caused quenching compounds through multiple non-covalent interactions. Chinese Chemical Letters, 2025, 36(9): 110821-. doi: 10.1016/j.cclet.2025.110821
-
[10]
Yu Xia , Yangming Jiang , Xin-Long Ni , Qiaochun Wang , Daoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782
-
[11]
Lijun Mao , Shuo Li , Xin Zhang , Zhan-Ting Li , Da Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363
-
[12]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[13]
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
-
[14]
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
-
[15]
Qingyu Niu , Yulu Zhang , Zerong Ge , Jiabao Liu , Zhiqiang Li , Yong Chen , Yu Liu . Competitive binding based on cucurbit[8]uril for florescence/phosphorescence ratiometric detection of 3-nitrotyrosine. Chinese Chemical Letters, 2025, 36(11): 110935-. doi: 10.1016/j.cclet.2025.110935
-
[16]
Gen Zhang , Ying Gu , Lin Li , Fuli Ma , Dan Yue , Xiaoguang Zhou , Chungui Tian . Anion-modulated HER and OER activity of 1D Co-Mo based interstitial compound heterojunctions for the effective overall water splitting. Chinese Chemical Letters, 2025, 36(7): 110110-. doi: 10.1016/j.cclet.2024.110110
-
[17]
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645
-
[18]
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
-
[19]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[20]
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1360)
- HTML views(50)
Login In
DownLoad: