Citation: Hang Li, Xiao-Qing Zhong, Yong-Lie Sun, Cheng-Yuan Huang, Qi-Hui Wu. Density functional theory calculations of lithium alloying with Ge10H16 atomic cluster[J]. Chinese Chemical Letters, ;2016, 27(03): 437-440. doi: 10.1016/j.cclet.2015.11.016 shu

Density functional theory calculations of lithium alloying with Ge10H16 atomic cluster

  • Corresponding author: Qi-Hui Wu, 
  • Received Date: 13 October 2015
    Available Online: 11 November 2015

    Fund Project: The project is financially supported by the Projects of Undergraduate Innovation & entrepreneurship Training Plans of Quanzhou Normal University (No.201310399008).Wu would like to thank Quanzhou "Tong-Jiang Scholar" program, Fujian "Min-Jiang Scholar" program, program for New Century Excellent Talents in University (No.NCET-13-0879) (No.201310399008)

  • We exploited a hydrogen-passivated germanium atomic cluster (Ge10H16) as a model to study the mechanism of lithium alloying with germanium. Based on the density functional theory, the electronic and crystal structures of lithium-alloyed Ge10H16 were investigated. The theoretical results indicate that the alloying of lithium with Ge10H16 will weaken the germanium-hydrogen bond and repel the closest germanium atom away from the alloyed lithium atom. Based on the maps of the electron density distribution, the nature of the lithium-germanium chemical bond was analyzed. Moreover, the diffusion process of the lithium on the Ge10H16 cluster was detected, which suggested that there is a close relationship between the diffusion barriers and the coordination number around the lithium atom.
  • 加载中
    1. [1]

      [1] G. Schull, T. Frederiksen, A. Arnau, et al., Atomic-scale engineering of electrodes for single-molecule contacts, Nat. Nanotechnol. 6(2011) 23-27.

    2. [2]

      [2] J.D. Meindl, Q. Chen, J.A. Davis, Limits on silicon nanoelectronics for terascale integration, Science 293(2001) 2044-2049.

    3. [3]

      [3] J. Dong, H. Li, L. Li, Multi-functional nano-electronics constructed using boron phosphide and silicon carbide nanoribbons, NPG Asia Mater. 5(2013) e56.

    4. [4]

      [4] Y.L. Sun, H.L. Song, Y. Yang, et al., First-principles study of lithium insertion into Si10H16 cluster, Comput. Theor. Chem. 1056(2015) 56-60.

    5. [5]

      [5] C.C. Arnold, D.M. Neumark, Study of Si4 and Si4- using threshold photodetachment (ZEKE) spectroscopy, J. Chem. Phys. 99(1993) 3353-3362.

    6. [6]

      [6] C.S. Xu, T.R. Taylor, G.R. Burton, et al., Photoelectron spectroscopy of SinH-(n=2-4) anions, J. Chem. Phys. 108(1998) 7645-7652.

    7. [7]

      [7] C. Sporea, F. Rabilloud, X. Cosson, et al., Theoretical study of mixed silicon-lithium clusters SinLip(+) (n=1-6, p=1-2), J. Phys. Chem. A 110(2006) 6032-6038.

    8. [8]

      [8] K.D. Rinnen, M.L. Mandich, Spectroscopy of neutral silicon cluster Si18-Si41:spectra are remarkably size independent, Phys. Rev. Lett. 69(1992) 1823-1826.

    9. [9]

      [9] J.M. Hunter, J.L. Fye, M.F. Jarrold, et al., Structural transition in size-delected germanium cluster ions, Phys. Rev. Lett. 73(1994) 2063-2066.

    10. [10]

      [10] R. Pillarisetty, Academic and industry research progress in germanium nanodevices, Nature 479(2011) 324-328.

    11. [11]

      [11] J.G. Ren, Q.H. Wu, H. Tang, et al., Germanium-graphene composite anode for high-energy lithium batteries with long cycle life, J. Mater. Chem. A 1(2013) 1821-1826.

    12. [12]

      [12] L.C. Yang, Q.S. Gao, L. Li, et al., Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction, Electrochem. Commun. 12(2010) 418-421.

    13. [13]

      [13] C. Wang, J. Ju, Y. Yang, et al., (Ⅰ)n situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties, J. Mater. Chem. A 1(2013) 8897-8902.

    14. [14]

      [14] C. Zhong, J.-Z. Wang, X.W. Gao, et al., (Ⅰ)n situ one-step synthesis of a 3D nanostructrured germanium-graphene composite and its application in lithium-ion batteries, J. Mater. Chem. A 1(2013) 10798-10804.

    15. [15]

      [15] J.P. Perdew, J.A. Chevary, S.H. Vosko, et al., Atoms, molecules, solid and surface:applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B:Condens. Matter 15(1992) 6671-6687.

    16. [16]

      [16] G. Dalba, P. Fornasini, R. Grisenti, et al., Local order in hydrogenated amorphous germanium thin films studied by extended X-ray absorption fine-structure spectroscopy, J. Phys.:Condens. Matter 9(1997) 5875-5888.

    17. [17]

      [17] T. van Buuren, T. Tiedje, J.R. Dahn, et al., Photoelectron spectroscopy measurements of the band gap in porous silicon, Appl. Phys. Lett. 63(1993) 2911-2923.

    18. [18]

      [18] M. Ben-Chorin, B. Averboulch, D. Kovalev, et al., (Ⅰ)nfluence of quantum confinement on the critical points of the band structure of Si, Phys. Rev. Lett. 77(1996) 763-766.

    19. [19]

      [19] C.-Y. Yeh, S.B. Zhang, A. Zunger, Confinement, surface, and chemisorption effects on the optical properties of Si quantum wires, Phys. Rev. B:Condens. Matter 50(1994) 14405-14415.

    20. [20]

      [20] S. Oeguet, J.R. Chelikowsky, S.G. Louie, Quantum confinement and optical gaps in Si nanocrystals, Phys. Rev. Lett. 79(1997) 1770-1773.

  • 加载中
    1. [1]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    2. [2]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    3. [3]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    4. [4]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    5. [5]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    6. [6]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    9. [9]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    10. [10]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    11. [11]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    12. [12]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    13. [13]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    14. [14]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    15. [15]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    16. [16]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    17. [17]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    18. [18]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    19. [19]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    20. [20]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

Metrics
  • PDF Downloads(0)
  • Abstract views(671)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return