Citation:
Xiao-Wei Cui, Shi-Yan Chen, Chuan-Zeng Wang, Wen-Xuan Zhao, Tao Sun, Xin-Long Ni, Yun-Qian Zhang, Zhu Tao. Involvement of unusual noncovalent interactions in the self-assembly of cucurbit[6]uril with[CdCl4]2- anions[J]. Chinese Chemical Letters,
;2016, 27(01): 173-177.
doi:
10.1016/j.cclet.2015.10.007
-
The[CdCl4]2- anion as a structure inducer has proved to be useful in the construction of cucurbit[n]urilmetal coordination architectures and materials. In order to better understand the role and influence of the structure inducer in Q[n] systems, we report herein the self-assembly of Q[6] solely in the presence of[CdCl4]2- anions and in the presence of both a linear cationic organic guest and[CdCl4]2- anions. X-ray diffraction analysis revealed that 1D Q[6] porous channels were formed by the noncovalent interactions between Q[6] and[CdCl4]2- anions, but the "honeycomb effect" was not observed in the present study. However, it seems that the "honeycomb effect" and the self-assembly of Q[6] with[CdCl4]2- anions can be significantly modified and switched in the presence of a linear cationic dibutylamine guest through some unusual noncovalent interactions.
-
Keywords:
- Cucurbit[6]uril,
- [CdCl4]2- anions,
- Cationic guest,
- Honeycomb effect,
- Assembly
-
-
-
[1]
[1] J. Kim, I.S. Jung, S.Y. Kim, et al., New cucurbituril homologues:syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril(n=5, 7, and 8), J. Am. Chem. Soc. 122(2000) 540-541.
-
[2]
[2] A.I. Day, A.P. Arnold, R.J. Blanch, B. Snushall, Controlling factors in the synthesis of cucurbituril and its homologues, J. Org. Chem. 66(2001) 8094-8100.
-
[3]
[3] A.I. Day, R.J. Blanch, A.P. Arnold, et al., A cucurbituril-based gyroscane:a new supramolecular form, Angew. Chem. Int. Ed. 41(2002) 275-277.
-
[4]
[4] X.J. Cheng, L.L. Liang, K. Chen, et al., Twisted cucurbit[14] uril, Angew. Chem. Int. Ed. 5(2013) 7393-7396.
-
[5]
[5](a) J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, The cucurbit[n]uril family, Angew. Chem. Int. Ed. 44(2005) 4844-4870;(b) L. Isaacs, Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers, Acc. Chem. Res. 47(2014) 2052-2062.
-
[6]
[6] K. Kim, N. Selvapalam, Y.H. Ko, et al., Functionalized cucurbiturils and their applications, Chem. Soc. Rev. 36(2007) 267-279.
-
[7]
[7](a) R.N. Dsouza, U. Pischel, W.M. Nau, Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution, Chem. Rev. 111(2011) 7941-7980;(b) K.I. Assaf, W.M. Nau, Cucurbiturils:from synthesis to high-affinity binding and catalysis, Chem. Soc. Rev. 44(2015) 394-418.
-
[8]
[8](a) E. Masson, X.X. Ling, R. Joseph, L. Kyeremeh-Mensah, X.Y. Lu, Cucurbituril chemistry:a tale of supramolecular success, RSC Adv. 2(2012) 1213-1247;(b) H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24(2013) 545-552.
-
[9]
[9] A.C. Bhasikuttan, H. Pal, J. Mohanty, Cucurbit[n]uril based supramolecular assemblies:tunable physico-chemical properties and their prospects, Chem. Commun. 47(2011) 9959-9971.
-
[10]
[10](a) Y.L. Liu, H. Yang, Z.Q. Wang, X. Zhang, Cucurbit[8] uril-based supramolecular polymers, Chem. Asian J. 8(2013) 1626-1632;(b) L.H. Wang, Z.J. Zhang, H.Y. Zhang, H.L. Wu, Y. Liu, A twin-axial[5] pseudorotaxane based on cucurbit[8] uril and a-cyclodextrin, Chin. Chem. Lett. 24(2013) 949-952;(c) T.T. Cao, X.Y. Yao, J. Zhang, Q.C. Wang, X. Ma, A cucurbit[8] uril recognized rigid supramolecular polymer with photo-stimulated responsiveness, Chin. Chem. Lett. 26(2015) 867-871.
-
[11]
[11] J. Lü, J.X. Lin, M.N. Cao, R. Cao, Cucurbituril:a promising organic building block for the design of coordination compounds and beyond, Coord. Chem. Rev. 257(2013) 1334-1356.
-
[12]
[12](a) X.L. Ni, X. Xiao, H. Cong, et al., Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils:new opportunities for supramolecular architectures and materials, Acc. Chem. Res. 47(2014) 1386-1395;(b) X.L. Ni, X. Xiao, H. Cong, et al., Cucurbit[n]uril-based coordination chemistry:from simple coordination complexes to novel poly-dimensional coordination polymers, Chem. Soc. Rev. 42(2013) 9480-9508.
-
[13]
[13] F. Zhang, T. Yajima, Y.Z. Li, et al., Iodine-assisted assembly of helical coordination polymers of cucurbituril and asymmetric copper(ii) complexes, Angew. Chem. Int. Ed. 44(2005) 3468-3473.
-
[14]
[14](a) I. Hwang, W.S. Jeon, H.J. Kim, et al., Cucurbit[7] uril:a simple macrocyclic, pHtriggered hydrogelator exhibiting guest-induced stimuli-responsive behavior, Angew. Chem. Int. Ed. 46(2007) 214-217;(b) S. Lim, H. Kim, N. Selvapalam, et al., Cucurbit[6] uril:organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties, Angew. Chem. Int. Ed. 47(2008) 3400-3403;(c) H. Kim, Y. Kim, M. Yoon, et al., Highly selective carbon dioxide sorption in an organic molecular porous material, J. Am. Chem. Soc. 132(2010) 12200-12202;(d) M. Yoon, K. Suh, H. Kim, et al., High and highly anisotropic proton conductivity in organic molecular porous materials, Angew. Chem. Int. Ed. 50(2011) 8016-8019.
-
[15]
[15] P. Thuéry, Lanthanide complexes with cucurbit[n]urils(n=5, 6, 7) and perrhenate ligands:new examples of encapsulation of perrhenate anions, Inorg. Chem. 48(2009) 4497-4513.
-
[16]
[16] L.L. Liang, X.L. Ni, Y. Zhao, et al., Construction of cucurbit[7] uril based tubular nanochannels incorporating associated[CdCl4]2- and lanthanide ions, Inorg. Chem. 52(2013) 1909-1915.
-
[17]
[17] N.N. Ji, X.J. Cheng, L.L. Liang, et al., The synthesis of networks based on the coordination of cucurbit[8] urils and alkali or alkaline earth ions in the presence of the polychloride transition-metal anions, CrystEngComm 15(2013) 7709-7717.
-
[18]
[18] N.N. Ji, X.J. Cheng, Y. Zhao, et al., Hexachloroplatinate(IV) anion induced cucurbituril supramolecular assembly with linear channels, Eur. J. Inorg. Chem. 9(2014) 1435-1438.
-
[19]
[19] N.N. Ji, X.J. Cheng, Y. Zhao, et al., Tetrachloridometallate dianion-induced cucurbit[8] uril supramolecular assemblies with large channels and their potential applications for extraction coating on solid-phase microextraction fibers, Inorg. Chem. 53(2014) 21-23.
-
[20]
[20] X.L. Ni, S.F. Xue, Z. Tao, et al., Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils, Coord. Chem. Rev. 287(2015) 89-113.
-
[21]
[21] Y. Zhao, L.L. Liang, K. Chen, et al., Inorganic anion-aided coordination oflanthanide metal ions to cucurbituril and supramolecular self-assembly:potential applications in the separation of light lanthanides, CrystEngComm 15(2013) 7987-7998.
-
[1]
-
-
-
[1]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[2]
Nianqiang Jiang , Yiqiang Ou , Yanpeng Zhu , Dingyong Zhong , Jiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004
-
[3]
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
-
[4]
Xianchen Hu , Junli Yang , Fang Gao , Zhiyong Zhao , Simin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967
-
[5]
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
-
[6]
Ran Cen , Yan-Yan Tang , Li-Xia Chen , Zhu Tao , Xin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744
-
[7]
Yu Xia , Yangming Jiang , Xin-Long Ni , Qiaochun Wang , Daoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782
-
[8]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[9]
Shunliu Deng , Haifeng Su , Yaxian Zhu , Yuzhi Wang , Yuhua Weng , Zhaobin Chen , Shunü Peng , Yinyun Lü , Xinyi Hong , Yiru Wang , Xiaozhen Huang , Zhimin Lin , Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002
-
[10]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[11]
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
-
[12]
Xianghe Kong , Xiaoli Liao , Zhenkun Huang , Lei Mei , Hongqing Wang , Kongqiu Hu , Weiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642
-
[13]
Lijun Mao , Shuo Li , Xin Zhang , Zhan-Ting Li , Da Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363
-
[14]
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
-
[15]
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
-
[16]
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
-
[17]
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
-
[18]
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
-
[19]
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
-
[20]
Zhiwen Li , Jingjing Zhang , Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(664)
- HTML views(6)