Citation: Xiao-Wei Cui, Shi-Yan Chen, Chuan-Zeng Wang, Wen-Xuan Zhao, Tao Sun, Xin-Long Ni, Yun-Qian Zhang, Zhu Tao. Involvement of unusual noncovalent interactions in the self-assembly of cucurbit[6]uril with[CdCl4]2- anions[J]. Chinese Chemical Letters, ;2016, 27(01): 173-177. doi: 10.1016/j.cclet.2015.10.007 shu

Involvement of unusual noncovalent interactions in the self-assembly of cucurbit[6]uril with[CdCl4]2- anions

  • Corresponding author: Xin-Long Ni,  Yun-Qian Zhang, 
  • Received Date: 11 August 2015
    Available Online: 10 September 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China(No. 21361006) (No. 21361006) "Chun-Hui" Fund of Chinese Ministry of Education(No. Z2011037) (No. Z2011037)Guizhou University(No. 20127027). (No. 20127027)

  • The[CdCl4]2- anion as a structure inducer has proved to be useful in the construction of cucurbit[n]urilmetal coordination architectures and materials. In order to better understand the role and influence of the structure inducer in Q[n] systems, we report herein the self-assembly of Q[6] solely in the presence of[CdCl4]2- anions and in the presence of both a linear cationic organic guest and[CdCl4]2- anions. X-ray diffraction analysis revealed that 1D Q[6] porous channels were formed by the noncovalent interactions between Q[6] and[CdCl4]2- anions, but the "honeycomb effect" was not observed in the present study. However, it seems that the "honeycomb effect" and the self-assembly of Q[6] with[CdCl4]2- anions can be significantly modified and switched in the presence of a linear cationic dibutylamine guest through some unusual noncovalent interactions.
  • 加载中
    1. [1]

      [1] J. Kim, I.S. Jung, S.Y. Kim, et al., New cucurbituril homologues:syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril(n=5, 7, and 8), J. Am. Chem. Soc. 122(2000) 540-541.

    2. [2]

      [2] A.I. Day, A.P. Arnold, R.J. Blanch, B. Snushall, Controlling factors in the synthesis of cucurbituril and its homologues, J. Org. Chem. 66(2001) 8094-8100.

    3. [3]

      [3] A.I. Day, R.J. Blanch, A.P. Arnold, et al., A cucurbituril-based gyroscane:a new supramolecular form, Angew. Chem. Int. Ed. 41(2002) 275-277.

    4. [4]

      [4] X.J. Cheng, L.L. Liang, K. Chen, et al., Twisted cucurbit[14] uril, Angew. Chem. Int. Ed. 5(2013) 7393-7396.

    5. [5]

      [5](a) J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, The cucurbit[n]uril family, Angew. Chem. Int. Ed. 44(2005) 4844-4870;(b) L. Isaacs, Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers, Acc. Chem. Res. 47(2014) 2052-2062.

    6. [6]

      [6] K. Kim, N. Selvapalam, Y.H. Ko, et al., Functionalized cucurbiturils and their applications, Chem. Soc. Rev. 36(2007) 267-279.

    7. [7]

      [7](a) R.N. Dsouza, U. Pischel, W.M. Nau, Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution, Chem. Rev. 111(2011) 7941-7980;(b) K.I. Assaf, W.M. Nau, Cucurbiturils:from synthesis to high-affinity binding and catalysis, Chem. Soc. Rev. 44(2015) 394-418.

    8. [8]

      [8](a) E. Masson, X.X. Ling, R. Joseph, L. Kyeremeh-Mensah, X.Y. Lu, Cucurbituril chemistry:a tale of supramolecular success, RSC Adv. 2(2012) 1213-1247;(b) H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24(2013) 545-552.

    9. [9]

      [9] A.C. Bhasikuttan, H. Pal, J. Mohanty, Cucurbit[n]uril based supramolecular assemblies:tunable physico-chemical properties and their prospects, Chem. Commun. 47(2011) 9959-9971.

    10. [10]

      [10](a) Y.L. Liu, H. Yang, Z.Q. Wang, X. Zhang, Cucurbit[8] uril-based supramolecular polymers, Chem. Asian J. 8(2013) 1626-1632;(b) L.H. Wang, Z.J. Zhang, H.Y. Zhang, H.L. Wu, Y. Liu, A twin-axial[5] pseudorotaxane based on cucurbit[8] uril and a-cyclodextrin, Chin. Chem. Lett. 24(2013) 949-952;(c) T.T. Cao, X.Y. Yao, J. Zhang, Q.C. Wang, X. Ma, A cucurbit[8] uril recognized rigid supramolecular polymer with photo-stimulated responsiveness, Chin. Chem. Lett. 26(2015) 867-871.

    11. [11]

      [11] J. Lü, J.X. Lin, M.N. Cao, R. Cao, Cucurbituril:a promising organic building block for the design of coordination compounds and beyond, Coord. Chem. Rev. 257(2013) 1334-1356.

    12. [12]

      [12](a) X.L. Ni, X. Xiao, H. Cong, et al., Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils:new opportunities for supramolecular architectures and materials, Acc. Chem. Res. 47(2014) 1386-1395;(b) X.L. Ni, X. Xiao, H. Cong, et al., Cucurbit[n]uril-based coordination chemistry:from simple coordination complexes to novel poly-dimensional coordination polymers, Chem. Soc. Rev. 42(2013) 9480-9508.

    13. [13]

      [13] F. Zhang, T. Yajima, Y.Z. Li, et al., Iodine-assisted assembly of helical coordination polymers of cucurbituril and asymmetric copper(ii) complexes, Angew. Chem. Int. Ed. 44(2005) 3468-3473.

    14. [14]

      [14](a) I. Hwang, W.S. Jeon, H.J. Kim, et al., Cucurbit[7] uril:a simple macrocyclic, pHtriggered hydrogelator exhibiting guest-induced stimuli-responsive behavior, Angew. Chem. Int. Ed. 46(2007) 214-217;(b) S. Lim, H. Kim, N. Selvapalam, et al., Cucurbit[6] uril:organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties, Angew. Chem. Int. Ed. 47(2008) 3400-3403;(c) H. Kim, Y. Kim, M. Yoon, et al., Highly selective carbon dioxide sorption in an organic molecular porous material, J. Am. Chem. Soc. 132(2010) 12200-12202;(d) M. Yoon, K. Suh, H. Kim, et al., High and highly anisotropic proton conductivity in organic molecular porous materials, Angew. Chem. Int. Ed. 50(2011) 8016-8019.

    15. [15]

      [15] P. Thuéry, Lanthanide complexes with cucurbit[n]urils(n=5, 6, 7) and perrhenate ligands:new examples of encapsulation of perrhenate anions, Inorg. Chem. 48(2009) 4497-4513.

    16. [16]

      [16] L.L. Liang, X.L. Ni, Y. Zhao, et al., Construction of cucurbit[7] uril based tubular nanochannels incorporating associated[CdCl4]2- and lanthanide ions, Inorg. Chem. 52(2013) 1909-1915.

    17. [17]

      [17] N.N. Ji, X.J. Cheng, L.L. Liang, et al., The synthesis of networks based on the coordination of cucurbit[8] urils and alkali or alkaline earth ions in the presence of the polychloride transition-metal anions, CrystEngComm 15(2013) 7709-7717.

    18. [18]

      [18] N.N. Ji, X.J. Cheng, Y. Zhao, et al., Hexachloroplatinate(IV) anion induced cucurbituril supramolecular assembly with linear channels, Eur. J. Inorg. Chem. 9(2014) 1435-1438.

    19. [19]

      [19] N.N. Ji, X.J. Cheng, Y. Zhao, et al., Tetrachloridometallate dianion-induced cucurbit[8] uril supramolecular assemblies with large channels and their potential applications for extraction coating on solid-phase microextraction fibers, Inorg. Chem. 53(2014) 21-23.

    20. [20]

      [20] X.L. Ni, S.F. Xue, Z. Tao, et al., Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils, Coord. Chem. Rev. 287(2015) 89-113.

    21. [21]

      [21] Y. Zhao, L.L. Liang, K. Chen, et al., Inorganic anion-aided coordination oflanthanide metal ions to cucurbituril and supramolecular self-assembly:potential applications in the separation of light lanthanides, CrystEngComm 15(2013) 7987-7998.

  • 加载中
    1. [1]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    2. [2]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    3. [3]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    4. [4]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    5. [5]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    6. [6]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    7. [7]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    12. [12]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    13. [13]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    14. [14]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    17. [17]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    18. [18]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    19. [19]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    20. [20]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

Metrics
  • PDF Downloads(0)
  • Abstract views(664)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return