Citation:
Wei Zhang, Zhi-Gang Xie. Fabrication of palladium nanoparticles as effective catalysts by using supramolecular gels[J]. Chinese Chemical Letters,
;2016, 27(01): 77-80.
doi:
10.1016/j.cclet.2015.09.009
-
Two-component supramolecular gels were made through self-assembly of tetrazolyl derivatives and Pd(OAc)2. The robust gels indicated high storage modulus(>10,000 Pa) and loss modulus, which were studied by rheological measurements. The formed Pd nanoparticles(~9 nm) obtained during the formation of the gel showed effective catalytic hydrogenation of nitrobenzene and could be recovered and reused without loss of activity.
-
Keywords:
- Pd nanoparticles,
- Self-assembly,
- Supramolecular gels,
- Catalysts
-
-
-
[1]
[1] C.B. Aakeröy, P.D. Chopade, C. Ganser, J. Desper, Facile synthesis and supramolecular chemistry of hydrogen bond/halogen bond-driven multi-tasking tectons, Chem. Commun. 47(2011) 4688-4690.
-
[2]
[2] N.P. Deifel, C.L. Cahill, Combining coordination and supramolecular chemistry for the formation of uranyl-organic hybrid materials, Chem. Commun. 47(2011) 6114-6116.
-
[3]
[3] P.A. Gale, J.L. Sessler, J.W. Steed, Supramolecular chemistry-introducing the latest web themed issue, Chem. Commun. 47(2011) 5931-5932.
-
[4]
[4] N. Lanigan, X. Wang, Supramolecular chemistry of metal complexes in solution, Chem. Commun. 49(2013) 8133-8144.
-
[5]
[5] J.W. Steed, Supramolecular gel chemistry:developments over the last decade, Chem. Commun. 47(2011) 1379-1383.
-
[6]
[6] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24(2013) 351-358.
-
[7]
[7] Y. Wang, S. Fabris, T.W. White, et al., Varying molecular interactions by coverage in supramolecular surface chemistry, Chem. Commun. 48(2012) 534-536.
-
[8]
[8] C.H. Wong, S.C. Zimmerman, Orthogonality in organic, polymer, and supramolecular chemistry:from Merrifield to click chemistry,, Chem. Commun. 49(2013) 1679-1695.
-
[9]
[9] R. Bleta, S. Menuel, B. Léger, et al., Evidence for the existence of crosslinked crystalline domains within cyclodextrin-based supramolecular hydrogels through sol-gel replication, RSC Adv. 4(2014) 8200-8208.
-
[10]
[10] M. Cametti, Z. Džolić, New frontiers in hybrid materials:noble metal nanoparticles-supramolecular gel systems, Chem. Commun. 50(2014) 8273-8286.
-
[11]
[11] J.R. Hiscock, I.L. Kirby, J. Herniman, et al., Supramolecular gels for the remediation of reactive organophosphorus compounds, RSC Adv. 4(2014) 45517-45521.
-
[12]
[12] S.J. James, A. Perrin, C.D. Jones, D.S. Yufit, J.W. Steed, Highly interlocked anionbridged supramolecular networks from interrupted imidazole-urea gels, Chem. Commun. 50(2014) 12851-12854.
-
[13]
[13] S.H. Jung, K.Y. Kim, D.K. Woo, S.S. Lee, J.H. Jung, Tb3+ triggered luminescence in a supramolecular gel and its use as a fluorescent chemoprobe for proteins containing alanine, Chem. Commun. 50(2014) 13107-13110.
-
[14]
[14] Y. Liang, L.M. Tang, Y. Xia, et al., One-pot synthesis of network supported catalyst using supramolecular gel as template, Chin. Chem. Lett. 21(2010) 991-994.
-
[15]
[15] Q. Lin, B. Sun, Q.P. Yang, et al., A novel strategy for the design of smart supramolecular gels:controlling stimuli-response properties through competitive coordination of two different metal ions, Chem. Commun. 50(2014) 10669-10671.
-
[16]
[16] S.H. Park, S.H. Jung, J. Ahn, et al., Reversibly tunable helix inversion in supramolecular gels trigged by Co2+, Chem. Commun. 50(2014) 13495-13498.
-
[17]
[17] M. Rodrigues, A.C. Calpena, D.B. Amabilino, M.L. Garduño-Ramírez, L. PérezGarcía, Supramolecular gels based on a Gemini imidazolium amphiphile as molecular material for drug delivery, J. Phys. Chem. B 2(2014) 5419-5429.
-
[18]
[18] L.M. Tang, Y.J. Wang, Highly stable supramolecular hydrogels formed from 1, 3,5-benzenetricarboxylic acid and hydroxyl pyridines, Chin. Chem. Lett. 20(2009) 1259-1262.
-
[19]
[19] D. Xia, M. Xue, A supramolecular polymer gel with dual-responsiveness constructed by crown ether based molecular recognition, Polym. Chem. 5(2014) 5591-5597.
-
[20]
[20] P. Xing, X. Chu, M. Ma, S. Li, A. Hao, Supramolecular gel from folic acid with multiple responsiveness, rapid self-recovery and orthogonal self-assemblies, Phys. Chem. Chem. Phys. 16(2014) 8346-8359.
-
[21]
[21] D. Yang, C. Liu, L. Zhang, M. Liu, Visualized discrimination of ATP from ADP and AMP through collapse of supramolecular gels, Chem. Commun. 50(2014) 12688-12690.
-
[22]
[22] L. Latxague, M.A. Ramin, A. Appavoo, et al., Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators, Angew. Chem. Int. Ed. 54(2015) 4517-4521.
-
[23]
[23] L. Li, H. Zhao, J. Wang, R. Wang, Facile fabrication of ultrafine palladium nanoparticles with size-and location-control in click-based porous organic polymers, ACS Nano 8(2014) 5352-5364.
-
[24]
[24] W. Zhang, G. Lu, C. Cui, et al., A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles, Adv. Mater. 26(2014) 4056-4060.
-
[25]
[25] H.L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework, J. Am. Chem. Soc. 133(2011) 1304-1306.
-
[26]
[26] G. Lu, S. Li, Z. Guo, et al., Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation, Nat. Chem. 4(2012) 310-316.
-
[27]
[27] Y. Huang, Z. Zheng, T. Liu, et al., Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki-Miyaura cross-coupling reaction, Catal. Commun. 14(2011) 27-31.
-
[28]
[28] C. Kang, L. Wang, Z. Bian, et al., Supramolecular hydrogels derived from cyclic amino acids and their applications in the synthesis of Pt and Ir nanocrystals, Chem. Commun. 50(2014) 13979-13982.
-
[29]
[29] L. Yan, G. Li, Z. Ye, F. Tian, S. Zhang, Dual-responsive two-component supramolecular gels for self-healing materials and oil spill recovery, Chem. Commun. 50(2014) 14839-14842.
-
[30]
[30] L. Yan, S. Gou, Z. Ye, S. Zhang, L. Ma, Self-healing and moldable material with the deformation recovery ability from self-assembled supramolecular metallogels, Chem. Commun. 50(2014) 12847-12850.
-
[31]
[31] Y. Li, W. Zhang, Z. Sun, et al., Light-induced synthesis of cross-linked polymers and their application in explosive detection, Eur. Polym. J. 63(2015) 149-155.
-
[32]
[32] Y. Li, Z. Sun, T. Sun, et al., Cross-linked polymers based on 2,5-disubstituted tetrazoles for unsaturated hydrocarbon detection, RSC Adv. 3(2013) 21302-21305.
-
[33]
[33] J. Tao, Z.J. Ma, R.B. Huang, L.S. Zheng, Synthesis and characterization of a tetrazolate-bridged coordination framework encapsulating D 2 h-symmetric cyclic(H2O) 4 cluster arrays, Inorg. Chem. 43(2004) 6133-6135.
-
[34]
[34] H. Lee, S. Kang, J.Y. Lee, J.H. Jung, Coordination polymer gel derived from a tetrazole ligand and Zn2+:spectroscopic and mechanical properties of an amorphous coordination polymer gel, Soft Matter 8(2012) 2950-2955.
-
[35]
[35] G. Yu, X. Yan, C. Han, F. Huang, Characterization of supramolecular gels, Chem. Soc. Rev. 42(2013) 6697-6722.
-
[36]
[36] A.M. Smith, R.J. Williams, C. Tang, et al., Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π-π interlocked β-sheets, Adv. Mater. 20(2008) 37-41.
-
[37]
[37] M.O.M. Piepenbrock, G.O. Lloyd, N. Clarke, J.W. Steed, Metal-and anion-binding supramolecular gels, Chem. Rev. 110(2009) 1960-2004.
-
[38]
[38] J.H. Lee, J. Park, J.W. Park, H.J. Ahn, J. Jaworski, J.H. Jung, Supramolecular gels with high strength by tuning of calix[4] arene-derived networks, Nat. Commun. 6(2015) 6650-6658.
-
[39]
[39] A.E. Way, A.B. Korpusik, T.B. Dorsey, et al., Enhancing the mechanical properties of guanosine-based supramolecular hydrogels with guanosine-containing polymers, Macromolecules 47(2014) 1810-1818.
-
[1]
-
-
-
[1]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[2]
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
-
[3]
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
-
[4]
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
-
[5]
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
-
[6]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[7]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[8]
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
-
[9]
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
-
[10]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[11]
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
-
[12]
Cong Gao , Zijian Zhu , Siwei Li , Zheng Xi , Qingqing Sun , Jie Han , Rong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968
-
[13]
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
-
[14]
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
-
[15]
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
-
[16]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[17]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[18]
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
-
[19]
Bing Niu , Honggao Huang , Liwei Luo , Li Zhang , Jianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431
-
[20]
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(724)
- HTML views(3)