Citation: Wei Zhang, Zhi-Gang Xie. Fabrication of palladium nanoparticles as effective catalysts by using supramolecular gels[J]. Chinese Chemical Letters, ;2016, 27(01): 77-80. doi: 10.1016/j.cclet.2015.09.009 shu

Fabrication of palladium nanoparticles as effective catalysts by using supramolecular gels

  • Corresponding author: Zhi-Gang Xie, 
  • Received Date: 15 July 2015
    Available Online: 22 August 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China(No. 91227118). (No. 91227118)

  • Two-component supramolecular gels were made through self-assembly of tetrazolyl derivatives and Pd(OAc)2. The robust gels indicated high storage modulus(>10,000 Pa) and loss modulus, which were studied by rheological measurements. The formed Pd nanoparticles(~9 nm) obtained during the formation of the gel showed effective catalytic hydrogenation of nitrobenzene and could be recovered and reused without loss of activity.
  • 加载中
    1. [1]

      [1] C.B. Aakeröy, P.D. Chopade, C. Ganser, J. Desper, Facile synthesis and supramolecular chemistry of hydrogen bond/halogen bond-driven multi-tasking tectons, Chem. Commun. 47(2011) 4688-4690.

    2. [2]

      [2] N.P. Deifel, C.L. Cahill, Combining coordination and supramolecular chemistry for the formation of uranyl-organic hybrid materials, Chem. Commun. 47(2011) 6114-6116.

    3. [3]

      [3] P.A. Gale, J.L. Sessler, J.W. Steed, Supramolecular chemistry-introducing the latest web themed issue, Chem. Commun. 47(2011) 5931-5932.

    4. [4]

      [4] N. Lanigan, X. Wang, Supramolecular chemistry of metal complexes in solution, Chem. Commun. 49(2013) 8133-8144.

    5. [5]

      [5] J.W. Steed, Supramolecular gel chemistry:developments over the last decade, Chem. Commun. 47(2011) 1379-1383.

    6. [6]

      [6] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24(2013) 351-358.

    7. [7]

      [7] Y. Wang, S. Fabris, T.W. White, et al., Varying molecular interactions by coverage in supramolecular surface chemistry, Chem. Commun. 48(2012) 534-536.

    8. [8]

      [8] C.H. Wong, S.C. Zimmerman, Orthogonality in organic, polymer, and supramolecular chemistry:from Merrifield to click chemistry,, Chem. Commun. 49(2013) 1679-1695.

    9. [9]

      [9] R. Bleta, S. Menuel, B. Léger, et al., Evidence for the existence of crosslinked crystalline domains within cyclodextrin-based supramolecular hydrogels through sol-gel replication, RSC Adv. 4(2014) 8200-8208.

    10. [10]

      [10] M. Cametti, Z. Džolić, New frontiers in hybrid materials:noble metal nanoparticles-supramolecular gel systems, Chem. Commun. 50(2014) 8273-8286.

    11. [11]

      [11] J.R. Hiscock, I.L. Kirby, J. Herniman, et al., Supramolecular gels for the remediation of reactive organophosphorus compounds, RSC Adv. 4(2014) 45517-45521.

    12. [12]

      [12] S.J. James, A. Perrin, C.D. Jones, D.S. Yufit, J.W. Steed, Highly interlocked anionbridged supramolecular networks from interrupted imidazole-urea gels, Chem. Commun. 50(2014) 12851-12854.

    13. [13]

      [13] S.H. Jung, K.Y. Kim, D.K. Woo, S.S. Lee, J.H. Jung, Tb3+ triggered luminescence in a supramolecular gel and its use as a fluorescent chemoprobe for proteins containing alanine, Chem. Commun. 50(2014) 13107-13110.

    14. [14]

      [14] Y. Liang, L.M. Tang, Y. Xia, et al., One-pot synthesis of network supported catalyst using supramolecular gel as template, Chin. Chem. Lett. 21(2010) 991-994.

    15. [15]

      [15] Q. Lin, B. Sun, Q.P. Yang, et al., A novel strategy for the design of smart supramolecular gels:controlling stimuli-response properties through competitive coordination of two different metal ions, Chem. Commun. 50(2014) 10669-10671.

    16. [16]

      [16] S.H. Park, S.H. Jung, J. Ahn, et al., Reversibly tunable helix inversion in supramolecular gels trigged by Co2+, Chem. Commun. 50(2014) 13495-13498.

    17. [17]

      [17] M. Rodrigues, A.C. Calpena, D.B. Amabilino, M.L. Garduño-Ramírez, L. PérezGarcía, Supramolecular gels based on a Gemini imidazolium amphiphile as molecular material for drug delivery, J. Phys. Chem. B 2(2014) 5419-5429.

    18. [18]

      [18] L.M. Tang, Y.J. Wang, Highly stable supramolecular hydrogels formed from 1, 3,5-benzenetricarboxylic acid and hydroxyl pyridines, Chin. Chem. Lett. 20(2009) 1259-1262.

    19. [19]

      [19] D. Xia, M. Xue, A supramolecular polymer gel with dual-responsiveness constructed by crown ether based molecular recognition, Polym. Chem. 5(2014) 5591-5597.

    20. [20]

      [20] P. Xing, X. Chu, M. Ma, S. Li, A. Hao, Supramolecular gel from folic acid with multiple responsiveness, rapid self-recovery and orthogonal self-assemblies, Phys. Chem. Chem. Phys. 16(2014) 8346-8359.

    21. [21]

      [21] D. Yang, C. Liu, L. Zhang, M. Liu, Visualized discrimination of ATP from ADP and AMP through collapse of supramolecular gels, Chem. Commun. 50(2014) 12688-12690.

    22. [22]

      [22] L. Latxague, M.A. Ramin, A. Appavoo, et al., Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators, Angew. Chem. Int. Ed. 54(2015) 4517-4521.

    23. [23]

      [23] L. Li, H. Zhao, J. Wang, R. Wang, Facile fabrication of ultrafine palladium nanoparticles with size-and location-control in click-based porous organic polymers, ACS Nano 8(2014) 5352-5364.

    24. [24]

      [24] W. Zhang, G. Lu, C. Cui, et al., A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles, Adv. Mater. 26(2014) 4056-4060.

    25. [25]

      [25] H.L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework, J. Am. Chem. Soc. 133(2011) 1304-1306.

    26. [26]

      [26] G. Lu, S. Li, Z. Guo, et al., Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation, Nat. Chem. 4(2012) 310-316.

    27. [27]

      [27] Y. Huang, Z. Zheng, T. Liu, et al., Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki-Miyaura cross-coupling reaction, Catal. Commun. 14(2011) 27-31.

    28. [28]

      [28] C. Kang, L. Wang, Z. Bian, et al., Supramolecular hydrogels derived from cyclic amino acids and their applications in the synthesis of Pt and Ir nanocrystals, Chem. Commun. 50(2014) 13979-13982.

    29. [29]

      [29] L. Yan, G. Li, Z. Ye, F. Tian, S. Zhang, Dual-responsive two-component supramolecular gels for self-healing materials and oil spill recovery, Chem. Commun. 50(2014) 14839-14842.

    30. [30]

      [30] L. Yan, S. Gou, Z. Ye, S. Zhang, L. Ma, Self-healing and moldable material with the deformation recovery ability from self-assembled supramolecular metallogels, Chem. Commun. 50(2014) 12847-12850.

    31. [31]

      [31] Y. Li, W. Zhang, Z. Sun, et al., Light-induced synthesis of cross-linked polymers and their application in explosive detection, Eur. Polym. J. 63(2015) 149-155.

    32. [32]

      [32] Y. Li, Z. Sun, T. Sun, et al., Cross-linked polymers based on 2,5-disubstituted tetrazoles for unsaturated hydrocarbon detection, RSC Adv. 3(2013) 21302-21305.

    33. [33]

      [33] J. Tao, Z.J. Ma, R.B. Huang, L.S. Zheng, Synthesis and characterization of a tetrazolate-bridged coordination framework encapsulating D 2 h-symmetric cyclic(H2O) 4 cluster arrays, Inorg. Chem. 43(2004) 6133-6135.

    34. [34]

      [34] H. Lee, S. Kang, J.Y. Lee, J.H. Jung, Coordination polymer gel derived from a tetrazole ligand and Zn2+:spectroscopic and mechanical properties of an amorphous coordination polymer gel, Soft Matter 8(2012) 2950-2955.

    35. [35]

      [35] G. Yu, X. Yan, C. Han, F. Huang, Characterization of supramolecular gels, Chem. Soc. Rev. 42(2013) 6697-6722.

    36. [36]

      [36] A.M. Smith, R.J. Williams, C. Tang, et al., Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π-π interlocked β-sheets, Adv. Mater. 20(2008) 37-41.

    37. [37]

      [37] M.O.M. Piepenbrock, G.O. Lloyd, N. Clarke, J.W. Steed, Metal-and anion-binding supramolecular gels, Chem. Rev. 110(2009) 1960-2004.

    38. [38]

      [38] J.H. Lee, J. Park, J.W. Park, H.J. Ahn, J. Jaworski, J.H. Jung, Supramolecular gels with high strength by tuning of calix[4] arene-derived networks, Nat. Commun. 6(2015) 6650-6658.

    39. [39]

      [39] A.E. Way, A.B. Korpusik, T.B. Dorsey, et al., Enhancing the mechanical properties of guanosine-based supramolecular hydrogels with guanosine-containing polymers, Macromolecules 47(2014) 1810-1818.

  • 加载中
    1. [1]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    2. [2]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    5. [5]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    6. [6]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    7. [7]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    12. [12]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    13. [13]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    14. [14]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    15. [15]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    18. [18]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    19. [19]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    20. [20]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

Metrics
  • PDF Downloads(0)
  • Abstract views(725)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return