Citation: Jing Nie, Yuan-Jie Teng, Zu-Guang Li, Wen-Han Liu, Maw-Rong Lee. Magnetic nanoparticles used in headspace extraction coupled with DSI-GC-IT/MS for analysis of VOCs in dry Traditional Chinese Medicine[J]. Chinese Chemical Letters, ;2016, 27(01): 178-184. doi: 10.1016/j.cclet.2015.09.006 shu

Magnetic nanoparticles used in headspace extraction coupled with DSI-GC-IT/MS for analysis of VOCs in dry Traditional Chinese Medicine

  • Corresponding author: Zu-Guang Li,  Wen-Han Liu, 
  • Received Date: 13 April 2015
    Available Online: 29 June 2015

    Fund Project: Support of this work by the Department of Education of Zhejiang Province(No. Pd2013016) (No. Pd2013016) Hangzhou Qianjiang Distinguished Experts Project(2014) (2014) Key Laboratory of Detection for Pesticide Residues of Ministry of Agriculture Project, and the Sprout Talented Project Program(No. 2011443) is gratefully acknowledged. (No. 2015C32006)

  • A novel magnetic method using polystyrene modified magnetic nanoparticles to perform thermoheadspace extraction was successfully developed for extraction and preconcentration of volatile organic components in dry Traditional Chinese Medicine(TCM) based on gas chromatography-ion trap/mass spectrometry with a ChromatoProbe direct sample introduction device. The dried fruit of Amomum testaceum Ridl. was used as the object TCM. The optimum parameters of headspace magnetic solid-phase extraction were investigated, in which desorption solvent ethyl acetate played a key role in this method, and the headspace extraction temperature of 90℃ and the headspace extraction time of 15 min finally decided. Headspace solid-phase microextraction method was also used to analyze volatile compounds in the TCM to compare with the proposed method. The results show that 60 components were identified totally by two methods; most of the low boiling point chemical compounds are isolated by this new method. In this work, an environmental-friendly and cheap analytical method was established, and a new approach to analyze volatile compounds in dry Traditional Chinese Medicine was also provided.
  • 加载中
    1. [1]

      [1] H.M. Sirat, L.F. Hong, S.H. Khaw, Chemical compositions of the essential oil of the fruits of Amomum testaceum Ridl, J. Essent. Oil Res. 13(2001) 86-87.

    2. [2]

      [2] M.H. Wu, P. Guo, H.B. Chen, Z.Z. Zhao, New bencaological studies of traditional Chinese medicine in the name of Doukou, Chin. J. Chin. Mat. Med. 37(2012) 1686-1692.

    3. [3]

      [3] Z.Y. Ye, Z.G. Li, D. Wei, M.R. Lee, Microwave-assisted extraction/dispersive liquidliquid microextraction coupled with DSI-GC-IT/MS for analysis of essential oil from three species of cardamom, Chromatographia 77(2014) 347-358.

    4. [4]

      [4] Q. Li, Z.L. Luo, X.L. Yang, W. Liu, M.H. Yang, Study comment on the methods of quality control of Chinese medicines, Chin. J. Chin. Med. 27(2012) 448-451.

    5. [5]

      [5] H. Sereshti, A. Rohanifar, S. Bakhtiari, S. Samadi, Bifunctional ultrasound assisted extraction and determination of Elettaria cardamomum Maton essential oil, J. Chromatogr. A 1238(2012) 46-53.

    6. [6]

      [6] G.A. Cardoso-Ugarte, G.P. Juárez-Becerra, M.E. Sosa-Morales, A. López-Malo, Microwave-assisted extraction of essential oils from herbs, J. Microw. Power Electromagn. Energy 47(2013) 63-72.

    7. [7]

      [7] G.J. Wang, M.L. Qi, Analysis of volatile compounds in Herba Asari by single-drop micro-extraction gas chromatography mass spectrometry, Chin. Chem. Lett. 24(2013) 542-544.

    8. [8]

      [8] C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62(1990) 2145-2148.

    9. [9]

      [9] H. Bagheri, O. Zandi, A. Aghakhani, Magnetic nanoparticle-based micro-solid phase extraction and GC-MS determination of oxadiargyl in aqueous samples, Chromatographia 74(2011) 483-488.

    10. [10]

      [10] S. Ilyas, M. Ilyas, R.A.L. van der Hoorn, S. Mathur, Selective conjugation of proteins by mining active proteomes through click-functionalized magnetic nanoparticles, ACS Nano 7(2013) 9655-9663.

    11. [11]

      [11] G.Z. Zhang, X. Zhou, X.H. Zang, et al., Analysis of nitrobenzene compounds in water and soil samples by graphene composite-based solid-phase microextraction coupled with gas chromatography-mass spectrometry, Chin. Chem. Lett. 25(2014) 1449-1454.

    12. [12]

      [12] X. Yu, Y. Sun, C.Z. Jiang, et al., Magnetic solid-phase extraction and ultrafast liquid chromatographic detection of Sudan dyes in red wines, juices, and mature vinegars, J. Sep. Sci. 35(2012) 3403-3411.

    13. [13]

      [13] M.B. Gholivand, M. Piryaei, M.M. Abolghasemi, Analysis of volatile oil composition of Citrus aurantium L. by microwave-assisted extraction coupled to headspace solid-phase microextraction with nanoporous based fibers, J. Sep. Sci. 36(2013) 872-877.

    14. [14]

      [14] A. Amirav, S. Dagan, A direct sample introduction device for mass spectrometry studies and gas chromatography mass spectrometry analyses, Eur. J. Mass Spectrom. 3(1997) 105-111.

    15. [15]

      [15] A.V. Herrera-Herrera, M.A. González-Curbelo, J. Hernández-Borges, M.A. Rodrí-guez-Delgado, Carbon nanotubes applications in separation science:a review, Anal. Chim. Acta 734(2012) 1-30.

    16. [16]

      [16] A. Speltini, M. Maiocchi, L. Cucca, D. Merli, A. Profumo, Solid-phase extraction of PFOA and PFOS from surface waters on functionalized multiwalled carbon nanotubes followed by UPLC-ESI-MS, Anal. Bioanal. Chem. 406(2014) 3657-3665.

  • 加载中
    1. [1]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    2. [2]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    3. [3]

      Dan ZhouLiangjin BaoHaoqi LongDuo ZhouYuwei XuBo WangChuanqin XiaLiang XianChengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093

    4. [4]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    5. [5]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    6. [6]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    7. [7]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    8. [8]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    9. [9]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    10. [10]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    11. [11]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    12. [12]

      Xue ZhengJizhen XieXing ZhangWeiting SunHeyang ZhaoYantuan LiCheng Wang . Corrigendum to "An overview of polymeric nanomicelles in clinical trials and on the market" [Chinese Chemical Letters 32 (2021) 243-257]. Chinese Chemical Letters, 2025, 36(2): 110545-. doi: 10.1016/j.cclet.2024.110545

    13. [13]

      Jindan ZhangZhenghong LiChi LiMengqi ZhuShicheng TangKaicong CaiZhibin ChengChulong LiuShengchang XiangZhangjing Zhang . Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM. Chinese Chemical Letters, 2025, 36(3): 110046-. doi: 10.1016/j.cclet.2024.110046

    14. [14]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    15. [15]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    16. [16]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    17. [17]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    18. [18]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    19. [19]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    20. [20]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

Metrics
  • PDF Downloads(0)
  • Abstract views(686)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return