Citation: Shahrzad Abdolmohammadi, Samira Karimpour. Rapid and mild synthesis of quinazolinones and chromeno[d]pyrimidinones using nanocrystalline copper(I) iodide under solvent-free conditions[J]. Chinese Chemical Letters, ;2016, 27(01): 114-118. doi: 10.1016/j.cclet.2015.08.014 shu

Rapid and mild synthesis of quinazolinones and chromeno[d]pyrimidinones using nanocrystalline copper(I) iodide under solvent-free conditions

  • Corresponding author: Shahrzad Abdolmohammadi, 
  • Received Date: 25 June 2015
    Available Online: 3 August 2015

  • This paper describes a very simple, efficient synthesis of quinazolinones and chromeno[d]pyrimidinones from the reaction of aryl aldehydes, urea/thiourea and active methylene compounds(dimedone/4-hydroxycoumarin) using nano-sized CuI particles under solvent-free conditions. The highlights of this new method are based on using an effective and recyclable catalyst, affording high yields of products, mild reaction conditions, facile work-up and purification.
  • 加载中
    1. [1]

      [1] K. Chen, K. Wang, A.M. Kirichian, et al., In silico design, synthesis, and biological evaluation of radioiodinated quinazolinone derivatives for alkaline phosphatasemediated cancer diagnosis and therapy, Mol. Cancer Ther. 5(2006) 3001-3013.

    2. [2]

      [2] M.M. Aly, Y.A. Mohamed, W.M. Basyouni, Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities-part-1, Eur. J. Med. Chem. 45(2010) 3365-3373.

    3. [3]

      [3] A. Kumar, C.S. Rajput, Synthesis and anti-inflammatory activity of newer quinazolin-4-one derivatives, Eur. J. Med. Chem. 44(2009) 83-90.

    4. [4]

      [4] M. Kidwai, S. Saxena, M.K.R. Khan, S.S. Thukral, Synthesis of 4-aryl-77-dimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2-one/thione-5-one derivatives and evaluation as antibacterials, Eur. J. Med. Chem. 40(2005) 816-819.

    5. [5]

      [5] R.Dahiya,A.Kumar,R.Yadav,Synthesis andbiologicalactivityofpeptide derivatives of iodoquinazolinones/nitroimidazoles, Molecules 13(2008) 958-976.

    6. [6]

      [6] V. Alagarsamy, U.S. Pathak, S.N. Pandaya, D. Sriram, E. De Clercq, Anti-HIV and anti bacterial activities of some disubstituted quinazolones and their bio-isoster disubstituted thienopyrimidones, Indian J. Pharm. Sci. 66(2000) 433-437.

    7. [7]

      [7] M.M. Ghorab, S.M.A. Gawad, M.S.A. El-Gaby, Synthesis and evaluation of some new fluorinated hydroquinazoline derivatives as antifungal agents, Farmaco 55(2000) 249-255.

    8. [8]

      [8] L. Alvey, S. Prado, V. Huteau, et al., A new synthetic access to furo[3,2-f]chromene analogues of an antimycobacterial, Bioorg. Med. Chem. 16(2008) 8264-8272.

    9. [9]

      [9] T. Symeonidis, M. Chamilos, J. Hadjipavlou-Litina, M. Kallitsakis, E. Litinas, Synthesis of hydroxycoumarins and hydroxybenzo[f]-or[h]coumarins as lipid peroxidation inhibitors, Bioorg. Med. Chem. Lett. 19(2009) 1139-1142.

    10. [10]

      [10] J.L. Wang, D. Liu, Z.J. Zhang, et al., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U.S.A. 97(2000) 7124-7129.

    11. [11]

      [11] J.F. Cheng, A. Ishikawa, Y. Ono, T. Arrheniusa, A. Nadzana, Novel chromene derivatives as TNF-α inhibitors, Bioorg. Med. Chem. Lett. 13(2003) 3647-3650.

    12. [12]

      [12] D. Grée, S. Vorin, L. Manthati, et al., The synthesis of new, selected analogues of the pro-apoptotic and anticancer molecule HA 14-1, Tetrahedron Lett. 49(2008) 3276-3278.

    13. [13]

      [13] W. Kemnitzer, S. Jiang, H. Zhang, et al., Discovery of 4-aryl-2-oxo-2H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based highthroughput screening assay, Bioorg. Med. Chem. Lett. 18(2008) 5571-5575.

    14. [14]

      [14] M.M. Khafagy, A.H.F.A. El-Wahas, F.A. Eid, A.M. El-Agrody, Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities, Farmaco 57(2002) 715-722.

    15. [15]

      [15] M. Kidwai, S. Saxena, M.K. Rahman Khan, S.S. Thukral, Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents, Bioorg. Med. Chem. Lett. 15(2005) 4295-4298.

    16. [16]

      [16] B.S. Kumar, N. Srinivasulu, R.H. Udupi, et al., Efficient synthesis of benzo[g]-and benzo[h]chromene derivatives by one-pot three-component condensation of aromatic aldehydes with active methylene compounds and naphthols, Russ. J. Org. Chem. 42(2006) 1813-1815.

    17. [17]

      [17] R.R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari, D. Sriramm, An atom efficient, solvent-free, green synthesis and antimycobacterial evaluation of 2-amino-6-methyl-4-aryl-8-[(E)-arylmethylidene]-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-carbonitriles, Bioorg. Med. Chem. Lett. 17(2007) 6459-6462.

    18. [18]

      [18] V.K. Tandon, M. Vaish, S. Jain, D.S. Bhakuni, R.C. Srimal, Synthesis, carbon-13 NMR and hypotensive action of 2,3-dihydro-2,2-dimethyl-4H-naphtho[1,2-b]pyran-4-one, Indian J. Pharm. Sci. 53(1991) 22-23.

    19. [19]

      [19] M. Longobardi, A. Bargagna, E. Mariani, P. Schenone, E. Marmo, 2H-[1] benzothiepino[5,4-b]pyran derivatives with local anesthetic and antiarrhythmic activities, Farmaco 45(1990) 399-413.

    20. [20]

      [20] H. Bedair, A. El-Hady, S. Abd El-Latif, H. Fakery, M. El-Agrody, 4-Hydroxycoumarin in heterocyclic synthesis part ⅡI. Synthesis of some new pyrano[2,3-d]pyrimidine, 2-substituted[1,2,4] triazolo[1,5-c]pyrimidine and pyrimido[1,6-b][1,2,4] triazine derivatives, Farmaco 55(2000) 708-714.

    21. [21]

      [21] M.M. Heravi, K. Bakhtiari, V. Zadsirjan, F. Bamoharram, Aqua mediated synthesis of substituted 2-amino-4H-chromenes catalyzed by green and reusable Preyssler heteropolyacid, Bioorg. Med. Chem. Lett. 17(2007) 4262-4265.

    22. [22]

      [22] C. Bruhlmann, F. Ooms, P. Carrupt, et al., Coumarins derivatives as dual inhibitors of acetylcholinesterase and monoamine oxidase, J. Med. Chem. 44(2001) 3195-3198.

    23. [23]

      [23] S.R. Kesten, T.G. Heffner, S.J. Johnson, et al., Design, synthesis, and evaluation of chromen-2-ones as potent and selective human dopamine D4 antagonists, J. Med. Chem. 42(1999) 3718-3725.

    24. [24]

      [24] V.P. Reddy, A.V. Kumar, K. Swapna, K.R. Rao, Copper oxide nanoparticle-catalyzed coupling of diaryl diselenide with aryl halides under ligand-free conditions, Org. Lett. 11(2009) 951-953.

    25. [25]

      [25] N.Mittapelly,B.R.Reguri,K.Mukkanti,Copperoxidenanoparticles-catalyzeddirect N-alkylation of amines with alcohols, Der Pharma Chemica 3(2011) 180-189.

    26. [26]

      [26] S. Abdolmohammadi, M. Afsharpour, Facile one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst, Chin. Chem. Lett. 23(2012) 257-260.

    27. [27]

      [27] S. Abdolmohammadi, S. Balalaie, A clean procedure for synthesis of pyrido[d]pyrimidine derivatives under solvent-free conditions catalyzed by ZrO2 nanoparticles, Comb. Chem. High Throughput Screen. 15(2012) 395-399.

    28. [28]

      [28] S. Abdolmohammadi, M. Mohammadnejad, F. Shafaei, TiO2 nanoparticles as an efficient catalyst for the one-pot preparation of tetrahydrobenzo[c]acridines in aqueous media, Z. Naturforsch. B 68b(2013) 362-366.

    29. [29]

      [29] S. Abdolmohammadi, S. Balalaie, M. Barari, F. Rominger, Three-component green reaction of arylaldehydes 6-amino-1,3-dimethyluracil and active methylene compounds catalyzed by Zr(HSO4)4 under solvent-free conditions, Comb. Chem. High Throughput Screen. 16(2013) 150-159.

    30. [30]

      [30] M. Tajbakhsh, E. Alaee, H. Alinezhad, et al., Titanium dioxide nanoparticles catalyzed synthesis of Hantzsch esters and polyhydroquinoline derivatives, Chin. J. Catal. 33(2012) 1517-1522.

    31. [31]

      [31] D. Ma, C. Xia, CuI-catalyzed coupling reaction of β-amino acids or esters with aryl halides at temperature lower than that employed in the normal Ullmann reaction. Facile synthesis of SB-214857, Org. Lett. 3(2001) 2583-2586.

    32. [32]

      [32] H. Zhang, Q. Cai, D. Ma, Amino acid promoted CuI-catalyzed C-N bond formation between aryl halides and amines or N-containing heterocycles, J. Org. Chem. 70(2005) 5164-5173.

    33. [33]

      [33] V.D. Bock, H. Hiemstra, J.H. van Maarseveen, CuI-catalyzed alkyne-azide "click" cycloadditions from a mechanistic and synthetic perspective, Eur. J. Org. Chem. 1(2006) 51-68.

    34. [34]

      [34] J. Safaei-Ghomi, A. Ziarati, R. Teymuri, CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines, Bull. Korean Chem. Soc. 33(2012) 2679-2682.

    35. [35]

      [35] H.R. Kalita, A.J. Borah, P. Phukan, Mukaiyama aldol reaction of trimethylsilyl enolate with aldehyde catalyzed by CuI, Indian J. Chem. 52B(2013) 289-292.

    36. [36]

      [36] Y.F. Liu, J.H. Zhan, J.H. Zeng, et al., Ethanolthermal synthesis to gamma-Cul nanocrystals at low temperature, J. Mater. Sci. Lett. 20(2001) 1865-1867.

    37. [37]

      [37] M. Ferhat, A. Zaoui, M. Certier, J.P. Dufour, B. Khelifa, Electronic structure of the copper halides CuCl, CuBr and Cul, Mater. Sci. Eng. B 39(1996) 95-100.

    38. [38]

      [38] H. Feraoun, H. Aourag, M. Certier, Theoretical studies of substoichiometric CuI, Mater. Chem. Phys. 82(2003) 597-601.

    39. [39]

      [39] M. Kidwai, S. Rastogi, Reaction of coumarin derivatives with nucleophiles in aqueous medium, Z. Naturforsch. B 63(b)(2008) 71-76.

    40. [40]

      [40] K.S. Niralwad, B.B. Shingate, M.S. Shingare, Ultrasound-assisted one-pot synthesis of octahydroquinazolinone derivatives catalyzed by acidic ionic liquid[tbmim]Cl2/AlCl3, J. Chin. Chem. Soc. 57(2010) 89-92.

    41. [41]

      [41] P.V. Badadhe, A.V. Chate, D.G. Hingane, et al., Microwave-assisted one-pot synthesis of octahydroquinazolinone derivatives catalyzed by thiamine hydrochloride under solvent-free condition, J. Korean Chem. Soc. 55(2011) 936-939.

    42. [42]

      [42] S. Karami, B. Karami, S. Khodabakhshi, Solvent-free synthesis of novel and known octahydroquinazolinones/thiones by the use of ZrOCl2·8H2O as a highly efficient and reusable catalyst, J. Chin. Chem. Soc. 60(2013) 22-26.

    43. [43]

      [43] A.M.A. Al-Kadasi, G.M. Nazeruddin, A facile and efficient ultrasound-assisted chlorosulfonic acid catalyzed one-pot synthesis of benzopyranopyrimidines under solvent-free conditions, J. Chem. Pharm. Res. 5(2013) 204-210.

    44. [44]

      [44] F. Tavakoli, M. Salavati-Niasari, D. Ghanbari, K. Saberyan, S.M. HosseinpourMashkani, Application of glucose as a green capping agent and reductant to fabricate CuI micro/nanostructures, Mater. Res. Bull. 49(2014) 14-20.

  • 加载中
    1. [1]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    2. [2]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    3. [3]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    4. [4]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

    5. [5]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    6. [6]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    7. [7]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    8. [8]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    9. [9]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    10. [10]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    11. [11]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    12. [12]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    13. [13]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    14. [14]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    15. [15]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    16. [16]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    17. [17]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    18. [18]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    19. [19]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    20. [20]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

Metrics
  • PDF Downloads(0)
  • Abstract views(708)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return