Citation: Yuan-Qin Zheng, Chun-Feng Luan, Zhi-Jing Wang, Yong-Qi Yao, Zhi-Chuan Shi, Xue-Feng Li, Zhi-Gang Zhao, Feng Chen. Enantioselective synthesis of 2-amino-3-nitrile-chromenes catalyzed by cinchona alkaloids:A remarkable additive effect[J]. Chinese Chemical Letters, ;2016, 27(01): 25-30. doi: 10.1016/j.cclet.2015.08.013 shu

Enantioselective synthesis of 2-amino-3-nitrile-chromenes catalyzed by cinchona alkaloids:A remarkable additive effect

  • Corresponding author: Xue-Feng Li,  Zhi-Gang Zhao, 
  • Received Date: 20 June 2015
    Available Online: 27 July 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China(No. 21402163) (No. 21402163)

  • 2-Amino-3-nitrile-chromenes with potential antitumor activity were constructed by a novel catalytic system. In combination with α-naphthol, quinine could effectively promote the Michael-cyclization process of malononitrile with functionalized chalcones in high yields and moderate to good enantioselectivity(up to 84% ee). It is notable that the enantioselectivity could be greatly improved when α-naphthol was employed as additive.
  • 加载中
    1. [1]

      [1](a) M. Kidwai, S. Saxena, M.K. Khan, et al., Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents, Bioorg. Med. Chem. Lett. 15(2005) 4295-4298;(b) N.J. Thumar, M.P. Patel, Synthesis and in vitro antimicrobial evaluation of 4Hpyrazolopyran-benzopyran and naphthopyran derivatives of 1H-pyrazole, Arkivoc(2009) 363-380;(c) N.M. Sabry, H.M. Mohamed, E.S. Khattab, et al., Synthesis of 4H-chromene, coumarin, 12H-chromeno[2,3-d]pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities, Eur J. Med. Chem. 46(2011) 765-772.

    2. [2]

      [2](a) S. Kasibhatla, H. Gourdeau, K. Meerovitch, et al., Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity, Mol. Cancer Ther. 3(2004) 1365-1374;(b) H. Gourdeau, L. Leblond, B. Hamelin, et al., Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4, 5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents,, Mol. Cancer Ther. 3(2004) 1375-1384.

    3. [3]

      [3](a) S.X. Cai, Small molecule vascular disrupting agents:potential new drugs for cancer treatment, Recent Pat. Anticancer Drug Discov. 2(2007) 79-101;(b) S.X. Cai, J. Drewe, W. Kemnitzer, Discovery of 4-aryl-4H-chromenes as potent apoptosis inducers using a cell-and caspase-based anti-cancer screening apoptosis program(ASAP):SAR studies and the identification of novel vascular disrupting agents, Anticancer Agents Med. Chem. 9(2009) 437-456.

    4. [4]

      [4](a) G. Yin, H. Shi, L. Xu, et al., Selective synthesis of cyano-functionalized 2-aryl-4H-chromenes and 2-amino-4H-chromene-3-carbonitriles by catalyst-tuned reactions of 2-hydroxychalcones with 2-substituted acetonitriles, Synthesis 45(2013) 334-340;(b) H.F. Gan, W.W. Cao, Z. Fang, et al., Efficient synthesis of chromenopyridine and chromene via MCRs, Chin. Chem. Lett. 25(2014) 1357-1362;(c) M.A. Ameen, S.M. Motamed, F.F. Abdel-latif, Highly efficient one-pot synthesis of dihydropyran heterocycles, Chin. Chem. Lett. 25(2014) 212-214;(d) J. Albadi, A. Mansournezhad, M. Darvishi-Paduk, Poly(4-vinylpyridine):as a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives, Chin. Chem. Lett. 24(2013) 208-210.

    5. [5]

      [5](a) S.X. Cai, J.A. Drewe, S. Kasibhatla, et al., Substituted 4-aryl-chromene as activator of caspases and inducer of apoptosis and as antivascular agent and the use thereof, U.S. Patent and Trademark Office, Washington, DC, 2011(Patent No.:7,968,595 B2);(b) A.M. Shestopalov, Y.M. Litvinov, L.A. Rodinovskaya, et al., Polyalkoxy substituted 4H-chromenes:synthesis by domino reaction and anticancer activity, ACS Comb. Sci. 14(2012) 484-490.

    6. [6]

      [6] X.S. Wang, G.S. Yang, G. Zhao, Enantioselective synthesis of naphthopyran derivatives catalyzed by bifunctional thiourea-tertiary amines, Tetrahedron:Asymmetry 19(2008) 709-714.

    7. [7]

      [7] J.W. Xie, X. Huang, L.P. Fan, et al., Efficient method for the synthesis of optically active 2-amino-2-chromene derivatives via one-pot tandem reactions, Adv. Synth. Catal. 351(2009) 3077-3082.

    8. [8]

      [8](a) Y. Gao, W. Yang, D.M. Du, Efficient organocatalytic asymmetric synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives, Tetrahedron:Asymmetry 23(2012) 339-344;(b) K. Hu, A. Lu, Y. Wang, et al., Chiral bifunctional squaramide catalyzed asymmetric tandem Michael-cyclization reaction:efficient synthesis of optically active 2-amino-4H-chromene-3-carbonitrile derivatives, Tetrahedron:Asymmetry 24(2013) 953-957;(c) Q. Ren, W.Y. Siau, Z. Du, et al., Expeditious assembly of a 2-amino-4Hchromene skeleton by using an enantioselective Mannich intramolecular ring cyclization-tautomerization cascade sequence, Chem. Eur. J. 17(2011) 7781-7785.

    9. [9]

      [9](a) G. Yang, C. Luo, X. Mu, et al., Highly efficient enantioselective three-component synthesis of 2-amino-4H-chromenes catalysed by chiral tertiary aminethioureas, Chem. Commun. 48(2012) 5880-5882;(b) W. Li, J. Huang, J. Wang, Organocatalytic conjugate addition promoted by multi-hydrogen-bond cooperation:access to chiral 2-amino-3-nitrile-chromenes, Org. Biomol. Chem. 11(2013) 400-406;(c) W. Li, H. Liu, X. Jiang, et al., Enantioselective organocatalytic conjugate addition of nitroalkanes to electrophilic 2-iminochromenes, ACS Catal. 2(2012) 1535-1538;(d) Y. Gao, D.M. Du, Facile synthesis of chiral 2-amino-4-(indol-3-yl)-4H-chromene derivatives using thiourea as the catalyst, Tetrahedron:Asymmetry 24(2013) 1312-1317;(e) W. Chen, Y. Cai, X. Fu, et al., Enantioselective one-pot synthesis of 2-amino-4-(indol-3-yl)-4H-chromenes, Org. Lett. 13(2011) 4910-4913.

    10. [10]

      [10] A. Adili, Z.L. Tao, D.F. Chen, et al., Quinine-catalyzed highly enantioselective cycloannulation of o-quinone methides with malononitrile, Org. Biomol. Chem. 13(2015) 2247-2250.

    11. [11]

      [11](a) C.H. Wong, L. Daniels, W.H. Orme-Johnson, et al., Enzyme-catalyzed organic synthesis:NAD(P)H regeneration using dihydrogen and the hydrogenase from Metbanobacterium tbermoautotropbicum, J. Am. Chem. Soc. 103(1981) 6227-6228;(b) G.Hambreus,N.Nyberg,Enzymatichydrogenationoftrans-2-nonenalinbarley, J. Agric. Food Chem. 53(2005) 8714-8721.

    12. [12]

      [12](a) E.M. Vogl, H. Gröger, M. Shibasaki, Towards perfect asymmetric catalysis:additives and cocatalysts, Angew. Chem. Int. Ed. 38(1999) 1570-1577;(b) A. Martinez-Castaneda, B. Poladura, H. Rodriguez-Solla, et al., Highly enantioselective proline-catalysed direct aldol reaction of chloroacetone and aromatic aldehydes, Chem. Eur. J. 18(2012) 5188-5190;(c) A. Martinez-Castaneda, K. Kedziora, I. Lavandera, et al., Highly enantioselective synthesis of alpha-azido-beta-hydroxy methyl ketones catalyzed by a cooperative proline-guanidinium salt system, Chem. Commun. 50(2014) 2598-2600;(d) A. Martinez-Castaneda, H. Rodriguez-Solla, C. Concellon, et al., Switching diastereoselectivity in proline-catalyzed aldol reactions, J. Org. Chem. 77(2012) 10375-10381;(e) T.J. Peelen, Y. Chi, S.H. Gellman, Enantioselective organocatalytic Michael additions of aldehydes to enones with imidazolidinones:cocatalyst effects and evidence for an enamine intermediate, J. Am. Chem. Soc. 127(2005) 11598-11599;(f) S. Kuwano, S. Harada, B. Kang, et al., Enhanced rate and selectivity by carboxylate salt as a basic cocatalyst in chiral N-heterocyclic carbene-catalyzed asymmetric acylation of secondary alcohols, J. Am. Chem. Soc. 135(2013) 11485-11488;(g) Y. Zhou, Z. Shan, Chiral diols:a new class of additives for direct aldol reaction catalyzed by L-proline, J. Org. Chem. 71(2006) 9510-9512;(h) C.S. Da, L.P. Che, Q.P. Guo, et al., 2, 4-Dinitrophenol as an effective cocatalyst:greatly improving the activities and enantioselectivities of primary amine organocatalysts for asymmetric aldol reactions,, J. Org. Chem. 74(2009) 2541-2546;(i) A.N. Martínez-Castañeda, B. Poladura, H. Rodríguez-Solla, et al., Direct aldol reactions catalyzed by a heterogeneous guanidinium salt/proline system under solvent-free conditions, Org. Lett. 13(2011) 3032-3035.

    13. [13]

      [13](a) X. Li, L. Cun, C. Lian, et al., Highly enantioselective Michael addition of malononitrile to α,β-unsaturated ketones, Org. Biomol. Chem. 6(2008) 349-353;(b) X. Li, Y. Ma, Z. Xing, et al., The asymmetric addition of malononitrile to α,β-unsaturated ketones catalyzed by RuCl2[(R,R)-DPEN](PPh3)2 as the precatalyst, Tetrahedron Lett. 55(2014) 3868-3872.

    14. [14]

      [14] G. Yin, L. Fan, T. Ren, et al., Synthesis of functionalized 2-aryl-4-(indol-3-yl)-4Hchromenes via iodine-catalyzed domino Michael addition-intramolecular cyclization reaction, Org. Biomol. Chem. 10(2012) 8877-8883.

    15. [15]

      [15] A. Russo, A. Perfetto, A. Lattanzi, Back to natural cinchona alkaloids:highly enantioselective Michael addition of malononitrile to enones, Adv. Synth. Catal. 351(2009) 3067-3071.

    16. [16]

      [16](a) P. Melchiorre, Cinchona-based primary amine catalysis in the asymmetric functionalization of carbonyl compounds, Angew. Chem. Int. Ed. 51(2012) 9748-9770;(b) G.D. Dijkstra, R.M. Kellogg, H. Wynberg, et al., Conformational study of cinchona alkaloids. A combined NMR, molecular mechanics and x-ray approach,, J. Am. Chem. Soc. 111(1989) 8069-8076;(c) T. Bürgi, A. Baiker, Conformational behavior of cinchonidine in different solvents:a combined NMR and ab initio investigation,J.Am.Chem.Soc.120(1998)12920-12926;(d) A.Urakawa,D.M.Meier,H.Ruègger,etal.,Conformational behavior of cinchonidine revisited:a combined theoretical and experimental study, J. Phys. Chem. A 112(2008) 7250-7255.

    17. [17]

      [17](a) R.A. Olsen, D. Borchardt, L. Mink, et al., Effect of protonation on the conformation of cinchonidine, J. Am. Chem. Soc. 128(2006) 15594-15595;(b) B. Minder, T. Mallat, P. Skrabal, et al., Enantioselective hydrogenation of ethyl pyruvate. Influenceof oxidative treatment of cinchonidine-modifiedplatinum catalyst and hemiketal formation in alcoholic solvents, Catal. Lett. 29(1994) 115-124;(c) D.Ferri,T.Bürgi,K.Borszeky,etal.,Enhanced enantioselectivity in ethyl pyruvate hydrogenation due to competing enantioselective aldolreaction catalyzed by cinchonidine, J. Catal. 193(2000) 139-144.

    18. [18]

      [18] J.L. Margitfalvi, E. Tálas, F. Zsila, et al., Dimer formation of cinchonidine in liquid phase:relevance to the heterogeneous catalytic enantioselective hydrogenation of ethyl pyruvate, Tetrahedron:Asymmetry 18(2007) 750-758.

  • 加载中
    1. [1]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    2. [2]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    3. [3]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    4. [4]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    5. [5]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    6. [6]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    7. [7]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    8. [8]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    9. [9]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    12. [12]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    15. [15]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    16. [16]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    17. [17]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    18. [18]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    19. [19]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    20. [20]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

Metrics
  • PDF Downloads(0)
  • Abstract views(717)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return