Citation: Santhisudha Sarva, Jayaprakash Soora Harinath, Siva Prasad Sthanikam, Selvarajan Ethiraj, Mohanasrinivasan Vaithiyalingam, Suresh Reddy Cirandur. Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes[J]. Chinese Chemical Letters, ;2016, 27(01): 16-20. doi: 10.1016/j.cclet.2015.08.012 shu

Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes

  • Corresponding author: Suresh Reddy Cirandur, 
  • Received Date: 15 January 2015
    Available Online: 21 May 2015

  • A series of bioactive bis(indolyl)methanes are synthesized by one-pot green reaction of indole with various substituted aldehydes by microwave irradiation under solvent free conditions. The antibacterial activity against Staphylococcus aureus and anti-inflammatory activity of the synthesized bis(indolyl)-methanes are evaluated in vitro and compared to standard drugs tetracycline and diclofenac, respectively. The majority of the compounds showed good antibacterial and anti-inflammatory activity. Interestingly, compounds 3j, 3i, 3k and 3g exhibited much higher anti-inflammatory activity than the standard diclofenac drug and thus qualify for clinical trials to be used as an anti-inflammatory compound.
  • 加载中
    1. [1]

      [1] J. Kluytmans, A. Van Belkum, H. Verbrugh, Nasal carriage of Staphylococcus aureus:epidemiology, underlying mechanisms, and associated risks, Clin. Microbiol. Rev. 10(1997) 505-520.

    2. [2]

      [2] B. John, Experimental Staph Vaccine Broadly Protective in Animal Studies, National Institute of Health News, 1999.

    3. [3]

      [3] C. Walsh, Antibiotics:Actions, Origins, Resistance, ASM Press, Washington, DC, 2003.

    4. [4]

      [4] L. Ferrero-Miliani, O.H. Nielsen, P.S. Andersen, S.E. Girardin, Chronic inflammation:importance of NOD2 and NALP3 in interleukin-1β generation, Clin. Exp. Immunol. 147(2007) 227-235.

    5. [5]

      [5] A. Kar, Medicinal Chemistry, 2nd ed., New Age International Publishers, New Delhi, 2003, p. 329.

    6. [6]

      [6] G. Kant, A. Parate, S.C. Chaturvedi, Qsar study of substituted 3,5-di-tert-butyl-4-hydroxy styrene:a series with antiinflammatory activity, Indian J. Pharm. Sci. 67(2005) 116-119.

    7. [7]

      [7] G.M. Cragg, P.G. Grothaus, D.J. Newman, Impact of natural products on developing new anti-cancer agents, Chem. Rev. 109(2009) 3012-3043.

    8. [8]

      [8] G.A. Von Cordell, Introduction to Alkaloids:A Biogenetic Approach, Wiley, New York, 1981.

    9. [9]

      [9] P. Bey, F.N. Bolkenius, N. Seiler, P. Casara, N-(2,3-Butadienyl)-1, 4-butanediamine derivatives:potent irreversible inactivators of mammalian polyamine oxidase, J. Med. Chem. 28(1985) 1-2.

    10. [10]

      [10] R. Bell, S. Carmeli, N. Sar, Vibrindole A, a metabolite of the marine bacterium, vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus, J. Nat. Prod. 57(1994) 1587-1590.

    11. [11]

      [11] K. Reddi Mohan Naidu, S.I. Khalivulla, S. Rasheed, et al., Synthesis of bisindolylmethanes and their cytotoxicity properties, Int. J. Mol. Sci. 14(2013) 1843-1853.

    12. [12]

      [12] M. Lounasmaa, A. Tolvanen, Simple indole alkaloids and those with a nonrearrangedmonoterpenoid unit, Nat. Prod. Rep. 17(2000) 175-191.

    13. [13]

      [13] K. Sujatha, P.T. Perumal, D. Muralidharan, M. Rajendran, Synthesis, analgesic and anti-inflammatory activities of bis(indolyl)methanes, Indian J. Chem. 48(2009) 267-272.

    14. [14]

      [14] R.E. Moore, C. Cheuk, X.Q.G. Yang, et al., Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyte hapalosiphon fontinalis, J. Org. Chem. 52(1987) 1036-1043.

    15. [15]

      [15] J.S. Yadav, B.V.S. Reddy, C.V.S.R. Murthy, G.M. Kumar, C. Madan, Lithium perchlorate catalyzed reactions of indoles:an expeditious synthesis of bis(indolyl)-methanes, Synthesis(2001) 783-787.

    16. [16]

      [16] W.L. Deb, P.J. Bhuyan, An efficient and clean synthesis of bis(indolyl)methanes in a protic solvent at room temperature, Tetrahedron Lett. 47(2006) 1441-1443.

    17. [17]

      [17] R.R. Rahul, D.B. Shinde, Zirconyl(IV) chloride-catalysed reaction of indoles:an expeditious synthesis of bis(indolyl)methanes, Acta Chim. Slov. 53(2006) 210-213.

    18. [18]

      [18] G. Babu, N. Sridhar, P.T. Perumal, A convenient method of synthesis of bisindolylmethanes:indium trichloride catalyzed reactions of indole with aldehydes and schiff's bases, Synth. Commun. 30(2000) 1609-1614.

    19. [19]

      [19] H. Firouzabadi, N. Iranpoor, A.A. Jafari, Aluminumdodecatungstophosphate(AlPW12O40), a versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indolederivatives, J. Mol. Catal. A Chem. 244(2006) 168-172.

    20. [20]

      [20] S.J. Ji, J.F. Zhou, D.G. Gu, S.Y. Wang, S.Y. Loh, Efficient synthesis of bis(indolyl)-methanes catalyzed by lewis acids in ionic liquids, Synlett 35(2003) 2077-2079.

    21. [21]

      [21] G.V.M. Sharma, J.J. Reddy, P.S. Lakshmi, P.R. Krishna, A versatile and practical synthesis of bis(indolyl)methanes/bis(indolyl)glycoconjugates catalyzed by trichloro-1,3, 5-triazine, Tetrahedron Lett. 45(2004) 7729-7732.

    22. [22]

      [22] S. Khaksar, S.M.J. Ostad, Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bis-indolyl methane derivatives, J. Fluorine Chem. 132(2011) 937-939.

    23. [23]

      [23] A. Kamal, A.A. Qureshi, Syntheses of some substituted di-indolylmethanes in aqueous medium at room temperature, Tetrahedron 19(1963) 513-520.

    24. [24]

      [24] R. Nagarajan, P.T. Perumal, Potassium hydrogen sulfate-catalyzed reactions of indoles:a mild, expedient synthesis of bis-indolylmethanes, Chem. Lett. 33(2004) 288-289.

    25. [25]

      [25] S.J. Ji, S.Y. Wang, Y. Zhang, T.P. Loh, Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions, Tetrahedron 60(2004) 2051-2055.

    26. [26]

      [26] A. Loupy, Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, 2006.

    27. [27]

      [27] M. Chakrabarti, S. Sarkar, Novel clay-mediated, tandem addition-elimination-(Michael) addition reactions of indoles with 3-formylindole:an eco-friendly route to symmetrical and unsymmetrical triindolylmethanes, Tetrahedron Lett. 43(2002) 1351-1353.

    28. [28]

      [28] G.S. Rashinkar, S.B. Pore, K.B. Mote, R.S. Salunkhe, An efficient synthesis of novel 2-amino-4-aryl-6-ferrocenyl pyrimidine, Indian J. Chem. 48B(2009) 606-610.

    29. [29]

      [29] B.C. Das, G. Marippan, S. Saha, D. Bhowmik, J. Chiranjib, Anthelmintic and antimicrobial activity of some novel chalcone derivatives, J. Chem. Pharm. Res. 2(2010) 113-120.

    30. [30]

      [30] S.Y. Wang, S.J. Ji, T.P. Loh, The Michael addition of indole to aα,β-unsaturated ketones catalyzed by iodine at room temperature, Synlett(2003) 2377-2379.

    31. [31]

      [31] A. Ravaei, Z.H. poor, T.Z. Salehi, et al., Evaluation of antimicrobial activity of three Lactobacillus spp. against antibiotic resistance Salmonella typhimurium, Adv. Stud. Biol. 5(2013) 61-70.

    32. [32]

      [32] R. Vadivu, K.S. Lakshmi, In vitro and in vivo anti-inflammatory activity of leaves of Symplocos cochinchinensis(Lour) Moore ssp laurina, Bangladesh J. Pharmacol. 3(2008) 121-124.

    33. [33]

      [33] J.S. Yadav, B.V.S. Reddy, C.V.S.R. Murthy, G.M. Kumar, C. Madan, Lithium perchlorate catalyzed reactions of indoles:an expeditious synthesis of bis(indolyl)-methanes, Synthesis 5(2001) 783-787.

    34. [34]

      [34] K. Reddi Mohan Naidu, P.S.I. Khalivulla, P. Chenna Rohini Kumar, O. Lasekan, KHSO4-SiO2 catalyzed facile synthesis of bis(indolyl)methanes, Org. Commun. 5(2012) 150-159.

    35. [35]

      [35] M.A. Zolfigol, P. Salehi, M. Shiri, Z. Tanbakouchian, A new catalytic method for the preparation of bis-indolyl and tris-indolyl methanes in aqueous media, Catal. Commun. 8(2007) 173-178.

    36. [36]

      [36] S. Handy, N.M. Westbrook, A mild synthesis of bis(indolyl)methanes using a deep eutectic solvent, Tetrahedron Lett. 55(2014) 4969-4971.

    37. [37]

      [37] S.P.A. Boehringer Mannheim Italia, Bis-Indole derivatives having antimetastatic activity, a process for their preparation and pharmaceutical compositions containing them, Eur. Pat. Appl.(1998) 13, CODEN:EPXXDW; EP887348.

    38. [38]

      [38] A.K. Mallik, R. Pal, T.K. Mandal, Facile formation of bis(3-indolyl)methylarenes by Iodine-catalyzed reaction of indole with α,α'-bis(arylmethylene)ketones and α-substituted arylmethyleneketones in dry ethanol, Indian J. Chem. 46B(2007) 2056-2059.

    39. [39]

      [39] R. Martínez, A. Espinosa, A. Tárraga, P. Molina, Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations, Tetrahedron 64(2008) 2184-2191.

  • 加载中
    1. [1]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    2. [2]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    3. [3]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    4. [4]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    7. [7]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    8. [8]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    9. [9]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    10. [10]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    11. [11]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    12. [12]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    13. [13]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    14. [14]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    15. [15]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    16. [16]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    17. [17]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    18. [18]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    19. [19]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    20. [20]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

Metrics
  • PDF Downloads(0)
  • Abstract views(779)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return