Citation: Zhen-Bang Lou, Xin-Long Pang, Chao Chen, Li-Rong Wen, Ming Li. Facile synthesis of 1-naphthols through a copper-catalyzed arylation of methyl ketones with o-bromoacetophenones[J]. Chinese Chemical Letters, ;2015, 26(10): 1231-1235. doi: 10.1016/j.cclet.2015.07.022 shu

Facile synthesis of 1-naphthols through a copper-catalyzed arylation of methyl ketones with o-bromoacetophenones

  • Corresponding author: Chao Chen,  Ming Li, 
  • Received Date: 15 May 2015
    Available Online: 20 July 2015

    Fund Project: This work was supported by National Natural Science Foundation of China (Nos. 21102080, 21372138) (Nos. 21102080, 21372138)Tsinghua University Initiative Scientific Research Program (No. 2011Z02150). (No. 2011Z02150)

  • The coupling reactions of simple methyl ketones with o-bromoacetophenones and subsquential cyclization reactions were realized to produce a range of 1-naphthols. These cascade reactions were initiated by a rare Cu-catalyzed arylation reaction of methyl ketones with aromatic bromides.
  • 加载中
    1. [1]

      [1] (a) For reviews on the catalytic Ullmann reaction, see:F. Monniers, M. Taillefer, Catalytic C-C, C-N, and C-O Ulmann-type coupling reactions, Angew. Chem. Int. Ed. 48(2009) 6954-6971;

    2. [2]

      (b) G. Evano, N. Blanchard, M. Toumi, Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis, Chem. Rev. 108(2008) 3054-3131;

    3. [3]

      (c) A.W. Thomas, S.V. Ley, Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. 42(2003) 5400-5449.

    4. [4]

      [2] (a) Cu-catalyzed arylation reactions with N-nucleophiles, see:F. Ullmann, Ueber eine neue bildungsweise von diphenylaminderivaten, Chem. Ber. 36(1903) 2382-2384;

    5. [5]

      (b) A. Kiyomori, J.F. Marcoux, S.L. Buchwald, An efficient copper-catalyzed coupling of aryl halides with imidazoles, Tetrahedron Lett. 40(1999) 2657-2660;

    6. [6]

      (c) S.E. Creutz, K.J. Lotito, G.C. Fu, J.C. Peters, Photoinduced Ullmann C-N coupling:demonstrating the viability of a radical pathway, Science 338(2012) 647-651;

    7. [7]

      (d) C.C.Malakar, A. Baskakova, J. Conrad, U. Beifuss, Copper-catalyzed synthesis of quinazolines in water starting from o-bromobenzylbromides and benzamidines, Chem. Eur. J. 18(2012) 8882-8885;

    8. [8]

      (e) W. Liu, L.Y. Han, R.L. Liu, L.G. Xu, Y.L. Bi, Copper-catalyzed N-arylation of 2-arylindoles with aryl halides, Chin. Chem. Lett. 25(2014) 1240-1243;

    9. [9]

      (f) M. Hamidreza, M.G. Mohammad, Practical copper-catalyzed N-arylation of amines with 20% aqueous solution of n-Bu4NOH, Chin. Chem. Lett. 23(2012) 301-304.

    10. [10]

      [3] (a) Cu-catalyzed arylation reactions with O-nucleophiles, see:F. Ullmann, P. Sponagel, Ueber die phenylirung von phenolen, Chem. Ber. 38(1905) 2211-2212;

    11. [11]

      (b) A. Ouali, J.F. Spindler, A. Jutand, M. Taillefer, Nitrogen ligands in coppercatalyzed arylation of phenols:structure/activity relationships and applications, Adv. Synth. Catal. 349(2007) 1906-1916;

    12. [12]

      (c) D. Maiti, S.L. Buchwald, Orthogonal Cu- and Pd-based catalyst systems for the O- and N-arylation of aminophenols, J. Am. Chem. Soc. 131(2009) 17423-17429;

    13. [13]

      (d) Y.P. Zhang, A.H. Shi, Y.S. Yang, C.L. Li, Impregnated copper on magnetite as catalyst for the O-arylation of phenols with aryl halides, Chin. Chem. Lett. 25(2014) 141-145.

    14. [14]

      [4] (a) Cu-catalyzed arylation reactions with S-nucleophiles, see:N. Barbero, R. SanMartin, E. Dominguez, An efficient copper-catalytic system for performing intramolecular O-arylation reactions in aqueous media. New synthesis of xanthones, Green Chem. 11(2009) 830-836;

    15. [15]

      (b) H. Deng, Z. Li, F. Ke, X. Zhou, Cu-catalyzed three-component synthesis of substituted benzothiazoles in water, Chem. Eur. J. 18(2012) 4840-4843.

    16. [16]

      [5] (a) Cu-catalyzed arylation reactions with activated C-nucleophiles, see:W.R.H. Hurtley, CCXLIV.-replacement of halogen in orthobromo-benzoic acid, J. Chem. Soc. (1929) 1870-1873;

    17. [17]

      (b) T. Minami, T. Isonaka, Y. Okada, J. Ichikawa, Copper(I) salt-mediated arylation of phosphinyl-stabilized carbanions and synthetic application to heterocyclic compounds, J. Org. Chem. 58(2009) 7009-7015;

    18. [18]

      (c) Y. Fang, C. Li, O-arylation versus C-arylation:copper-catalyzed intramolecular coupling of aryl bromides with 1,3-dicarbonyls, J. Org. Chem. 71(2006) 6427-6431.

    19. [19]

      [6] G. Danoun, A. Tlili, F. Monnier, M. Taillefer, Direct copper-catalyzed a-arylation of benzyl phenyl ketones with aryl iodides:route towards tamoxifen, Angew. Chem. Int. Ed. 51(2012) 12815-12819.

    20. [20]

      [7] R. Xie, Y. Ling, H. Fu, Copper-catalyzed synthesis of benzocarbazoles via a-Carylation of ketones, Chem. Commun. 48(2012) 12210-12212.

    21. [21]

      [8] (a) Y. Wang, C. Chen, J. Peng, M. Li, Copper(II)-catalyzed three-component cascade annulation of diaryliodoniums, nitriles, and alkynes:a regioselective synthesis of multiply substituted quinolines, Angew. Chem. Int. Ed. 52(2013) 5323-5327;

    22. [22]

      (b) X. Su, C. Chen, Y. Wang, et al., One-pot synthesis of quinazoline derivatives via [2+2+2] cascade annulation of diaryliodonium salts and two nitriles, Chem. Commun. 49(2013) 6752-6754;

    23. [23]

      (c) F. Wang, C. Chen, G. Deng, C. Xi, Concise approach to benzisothiazol-3(2H)-one via copper-catalyzed tandem reaction of o-bromobenzamide and potassium thiocyanate in water, J. Org. Chem. 77(2012) 4148-4151.

    24. [24]

      [9] Z. Lou, S. Zhang, C. Chen, et al., Concise synthesis of 1-naphthols under mild conditions through a copper-catalyzed arylation of methyl ketones, Adv. Synth. Catal. 356(2014) 153-159.

    25. [25]

      [10] (a) K. Okuma, R. Itoyama, A. Sou, N. Nagahora, K. Shioj, Tandem carbon-carbon bond insertion and intramolecular aldol reaction of benzyne with aroylacetones:novel formation of 4,40-disubstituted 1,10-binaphthols, Chem. Commun. 48(2012) 11145-11147;

    26. [26]

      (b) D. Mal, A.K. Jana, P. Mitra, K. Ghosh, Benzannulation for the regiodefined synthesis of 2-alkyl/aryl-1-naphthols:total synthesis of arnottin I, J. Org. Chem. 76(2011) 3392-3398;

    27. [27]

      (c) H. Xu, S. Li, H. Liu, H. Fu, Y. Jiang, Simple and efficient copper-catalyzed cascade synthesis of naphthols containing multifunctional groups under mild conditions, Chem. Commun. 46(2010) 7617-7619;

    28. [28]

      (d) G. Chai, Z. Lu, C. Fu, S. Ma, Studies on the tandem reaction of 4-aryl-2, 3-allenoates with organozinc reagents:a facile route to polysubstituted naphthols, Chem. Eur. J. 15(2009) 11083-11086;

    29. [29]

      (e) A.G. Sergeev, T. Schulz, C. Torborg, et al., Palladium-catalyzed hydroxylation of aryl halides under ambient conditions, Angew. Chem. Int. Ed. 48(2009) 7595-7599;

    30. [30]

      (f) S. Akai, T. Ikawa, S. Takayanagi, et al., Synthesis of biaryl compounds through three-component assembly:ambidentate effect of the tert-butyldimethylsilyl group for regioselective diels-alder and hiyama coupling reactions, Angew. Chem. Int. Ed. 47(2008) 7673-7676;

    31. [31]

      (g) X. Huang, J. Xue, A novel multicomponent reaction of arynes, b-keto sulfones, and Michael-type acceptors:a direct synthesis of polysubstituted naphthols and naphthalenes, J. Org. Chem. 72(2007) 3965-3968;

    32. [32]

      (h) H. Tsukamoto, Y. Kondo, Palladium(II)-catalyzed annulation of alkynes with ortho-ester-containing phenylboronic acids, Org. Lett. 9(2007) 4227-4230;

    33. [33]

      (i) T. Hamura, T. Suzuki, T. Matsumoto, K. Suzuki, Tandem ring expansion of alkenyl benzocyclobutenol derivatives into substituted naphthols, Angew. Chem. Int. Ed. Engl. 118(2006) 6442-6444;

    34. [34]

      (j) X. Zhang, S. Sarkar, R.C. Larock, Synthesis of naphthalenes and 2-naphthols by the electrophilic cyclization of alkynes, J. Org. Chem. 71(2009) 236-243.

    35. [35]

      [11] R. Abazari, F. Heshmatpour, S. Balalaie, Pt/Pd/Fe trimetallic nanoparticle produced via reverse micelle technique:synthesis, characterization, and its use as an efficient catalyst for reductive hydrodehalogenation of aryl and aliphatic halides under mild conditions, ACS Catal. 3(2013) 139-149.

    36. [36]

      [12] N. Miyaura, A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds, Chem. Rev. 95(1995) 2457-2483.

    37. [37]

      [13] D. Vuluga, J. Legros, B. Crousse, D. Bonnet-Delpon, Facile access to fluorinated aryl and vinyl ethers through copper-catalysed reaction of fluoro alcohols, Eur. J. Org. Chem. (2009) 3513-3518.

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    3. [3]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    4. [4]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    5. [5]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    6. [6]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    7. [7]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    8. [8]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    9. [9]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    10. [10]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    11. [11]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    12. [12]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    13. [13]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    14. [14]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    15. [15]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    16. [16]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    17. [17]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    18. [18]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    19. [19]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    20. [20]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

Metrics
  • PDF Downloads(0)
  • Abstract views(731)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return