Citation: Mi-Qin Zhan, Ke-Ke Yang, Yu-Zhong Wang. Shape-memory poly(p-dioxanone)-poly(ε-caprolactone)/sepiolite nanocomposites with enhanced recovery stress[J]. Chinese Chemical Letters, ;2015, 26(10): 1221-1224. doi: 10.1016/j.cclet.2015.07.019 shu

Shape-memory poly(p-dioxanone)-poly(ε-caprolactone)/sepiolite nanocomposites with enhanced recovery stress

  • Corresponding author: Ke-Ke Yang,  Yu-Zhong Wang, 
  • Received Date: 2 June 2015
    Available Online: 30 June 2015

    Fund Project: This work was supported financially by the National Science Foundation of China (Nos. 51473096, 51421061, J1103315) (Nos. 51473096, 51421061, J1103315)

  • Shape-memory poly(p-dioxanone)-poly(ε-caprolactone)/sepiolite (PPDO-PCL/OSEP) nanocomposites with different OSEP nanofiber loading were fabricated by chain-extending the PPDO-diol and PCL/OSEP precursors. The precursors and the composites were characterized by 1H NMR, FT-IR, GPC, SEM and TEM. The results demonstrate that a part of PCL segments grafted on the surface of OSEP and composites display a fine dispersion of OSEP fiber in nanoscale with low OSEP content. The shape memory effect (SME) was evaluated by DMA, the results reveal that the PPDO-PCL/OSEP nanocomposites exhibit desirable shape-memory performance. The reinforcement of composites by incorporation of trace OSEP nanofiber evokes an effective improvement in shape-memory recovery stress.
  • 加载中
    1. [1]

      [1] R. Xiao, J.K. Guo, D.L. Safranski, T.D. Nquyen, Solvent-driven temperature memory and multiple shape memory effects, Soft Matter. 11(2015) 3977-3985.

    2. [2]

      [2] Y.F. Luo, M.N. Huang, S.J. Wang, Y. Fu, Y.L. Wang, Design, synthesis and characterization of novel poly (urethane-urea) based on a macrodiol from poly (lactic acid) and poly (p-dioxanone), Chin. Chem. Lett. 22(2011) 237- 240.

    3. [3]

      [3] X.T. Zheng, S.B. Zhou, Y. Xiao, et al., Shape memory effect of poly (D,L-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles, Colloids Surf. B:Biointerfaces 71(2009) 67-72.

    4. [4]

      [4] W.M. Huang, Z. Ding, C.C. Wang, et al., Shape memory materials, Mater. Today 13(2010) 54-61.

    5. [5]

      [5] C.L. Huang, M.J. He, M. Huo, et al., A facile method to produce PBS-PEG/CNTs nanocomposites with controllable electro-induced shape memory effect, Polym. Chem. 4(2013) 3987-3997.

    6. [6]

      [6] K. Gall, M.L. Dunn, Y.P. Liu, et al., Shape memory polymer nanocomposites, Acta Mater. 50(2002) 5115-5126.

    7. [7]

      [7] B. Xu, Y.Q. Fu, M. Ahmad, et al., Thermo-mechanical properties of polystyrenebased shape memory nanocomposites, J. Mater. Chem. 20(2010) 3442-3448.

    8. [8]

      [8] K.K. Yang, X.L. Wang, Y.Z. Wang, Poly (p-dioxanone) and its copolymers, J. Macromol. Sci. Part C:Polym. Rev. 42(2002) 373-398.

    9. [9]

      [9] L.P. Xiao, M. Wei, M.Q. Zhan, et al., Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding, Polym. Chem. 5(2014) 2231-2241.

    10. [10]

      [10] M. Wei, M.Q. Zhan, D.Q. Yu, et al., A novel poly (tetramethylene ether) glycol and poly (ε-caprolactone) based dynamic network via quadruple hydrogenbonding with triple-shape effect and self-healing capacity, ACS Appl. Mater. Interfaces 7(2015) 2585-2596.

    11. [11]

      [11] A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science 296(2002) 1673-1676.

    12. [12]

      [12] H. Shariatmadari, A.R. Mermut, Magnesium- and silicon-induced phosphate desorption in smectite-, palygorskite-, and sepiolite-calcite systems, Soil Sci. Soc. Am. J. 63(1999) 1167-1173.

    13. [13]

      [13] B. Wang, C. Ma, Z.C. Xiong, et al., Synthesis of novel copolymer:poly (p-dioxanone-co-L-phenylalanine), Chin. Chem. Lett. 24(2013) 392-396.

    14. [14]

      [14] Z.C. Qiu, J.J. Zhang, Y. Niu, et al., Preparation of poly (p-dioxanone)/sepiolite nanocomposites with excellent strength/toughness balance via surface-initiated polymerization, Ind. Eng. Chem. Res. 50(2011) 10006-10016.

    15. [15]

      [15] Y. Niu, P. Zhang, J.J. Zhang, et al., Poly (p-dioxanone)-poly (ethylene glycol) network:synthesis, characterization, and its shape memory effect, Polym. Chem. 3(2012) 2508-2516.

    16. [16]

      [16] T. Xie, Tunable polymer multi-shape memory effect, Nature 464(2010) 267-270.

    17. [17]

      [17] Z.Q. Duan, Y.T. Liu, X.M. Xie, X.Y. Ye, A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties, Chin. Chem. Lett. 24(2013) 17-19.

  • 加载中
    1. [1]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    2. [2]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    3. [3]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    4. [4]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    5. [5]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    6. [6]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    7. [7]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    8. [8]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    9. [9]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    10. [10]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    11. [11]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    12. [12]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    13. [13]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    14. [14]

      Yan ChenXinnan WangYifan LinChun Liu . Shape/dimension-controllable organic heterostructures from one monomer pair. Chinese Chemical Letters, 2025, 36(3): 109903-. doi: 10.1016/j.cclet.2024.109903

    15. [15]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    16. [16]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    17. [17]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    18. [18]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    19. [19]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    20. [20]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

Metrics
  • PDF Downloads(0)
  • Abstract views(740)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return